Innovative Hematopoietic Gene-Therapy Concepts for Hereditary Pulmonary Alveolar Proteinosis Utilizing Hematopoietic Stem Cell Derived Macrophages

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4417-4417
Author(s):  
Nico Lachmann ◽  
Christine Happle ◽  
Takuji Suzuki ◽  
Miriam Hetzel ◽  
Kevin A. Link ◽  
...  

Abstract Hereditary pulmonary alveolar proteinosis (herPAP) is a rare lung disease caused by mutations in the granulocyte/macrophage-colony-stimulating factor (GM-CSF) receptor genes (CSF2RA and CSF2RB), resulting in disturbed alveolar macrophage (AM) differentiation, massive alveolar proteinosis, and life-threatening respiratory insufficiency. We here introduce pulmonary transplantation of gene corrected hematopoietic stem cell (HSC)-derived macrophage progenitors (MP) as a novel, cause directed, and well-tolerated therapy for herPAP. In a Csf2rb-/- mouse-model, selective pulmonary engraftment of healthy donor cells upon pulmonary transplantation of MPs was demonstrated by flow- and chip cytometry. Profound reduction of alveolar-protein levels and significant improvement of clinical parameters such as lung function and lung densities on CT scans were observed for more than nine months. Subsequent in situ analysis of donor cells revealed in vivo differentiation towards an AM phenotype characterized by CD11chi, CD11blo, MHC-II+, CD14+, F4/80+ surface marker, poor antigen presentation capacity, high phagocytic activity and AM-typical morphology on electron microscopy. Similar results were obtained following pulmonary transplantation of MPs differentiated from lentivirally corrected Csf2rb -/- HSCs. In vitro these gene-corrected HSCs expanded up to 1045-fold while differentiating into typical alveolar macrophages with F4/80, CD11b, CD11c, CD68, as well as Csf2rb mRNA and protein (CD131) expression and reconstitution of GM-CSF receptor signaling. Transplanted herPAP mice displayed significant improvement of biomarkers in the bronchoalveolar fluid (cloudiness, turbidity, SP-D, MCP-1, M-CSF, and GM-CSF) and in AMs (mRNA for PU.1, PPARg and ABCG1). Moreover, administration of human CD34+ cell-derived MPs profoundly improved symptoms in a humanized herPAP mouse model. Here, transplantation of 1-2x106 human MPs led to long-term pulmonary engraftment and reduced alveolar protein levels by 50-70%. CT scans six months after transplantation revealed significant improvements in herPAP related signs, including marked reduction of expiratory lung densities and normalisation of inspiratory to expiratory lung volume ratio. Furthermore, to genetically correct human CSF2RA-patient derived CD34+ cells, we have generated SIN-lentiviral vectors expressing a codon-optimized human CSF2RA-cDNA in combination with EGFP (Lv.EFS.CSF2RA.EGFP) from an EFS1a-promoter. BaF3 cells transduced with this vector showed stable and longterm (>3 month) expression of CSF2RA (CD116) by flow cytometry and survived in hGM-CSF dependant assays even at low concentrations of GM-CSF (5 ng/ml) confirming the formation of functional hybrid receptors of the murine GM-CSF receptor ß-chain with the transgene. Characterization of GM-CSF receptor downstream signalling revealed 5-6-fold increased STAT5 phosphorylation by Western blot in response to hGM-CSF (over control cells). Conferring this vector to CD34+ cells of CSF2RA-deficient patients yielded efficient CD116 (CSF2RA) expression, and rescued hGM-CSF dependent colony formation as well as monocytoid differentiation. Of note, clonogenic growth by G-CSF control treatment revealed no differences in colony formation or differentiation capacity when compared to uncorrected patient samples. Furthermore, healthy Lv.EFS.CSF2RA.EGFP transduced CD34+ samples, while showing robust CD116 overexpression, exhibited no aberrations in biological functions such as colony formation or in vitro differentiation towards macrophages. Thus, we here describe an innovative, cause directed and highly effective hematopoietic gene therapy approach to herPAP. Given the longevity of the transplanted MP population in our model, the strategy also may serve as a proof-of-principle to incorporate long-lived differentiated, cell sources into current hematopoietic gene therapy concepts. Disclosures No relevant conflicts of interest to declare.

Haematologica ◽  
2019 ◽  
Vol 105 (4) ◽  
pp. 1147-1157
Author(s):  
Miriam Hetzel ◽  
Elena Lopez-Rodriguez ◽  
Adele Mucci ◽  
Ariane Hai Ha Nguyen ◽  
Takuji Suzuki ◽  
...  

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1652-1652
Author(s):  
Patrick Ziegler ◽  
Steffen Boettcher ◽  
Hildegard Keppeler ◽  
Bettina Kirchner ◽  
Markus G. Manz

Abstract We recently demonstrated human T cell, B cell, dendritic cell, and natural interferon producing cell development and consecutive formation of primary and secondary lymphoid organs in Rag2−/−gc−/− mice, transplanted as newborns intra-hepatically (i.h.) with human CD34+ cord blood cells (Traggiai et al., Science 2004). Although these mice support high levels of human cell engraftment and continuous T and B cell formation as well as CD34+ cell maintenance in bone marrow over at least six month, the frequency of secondary recipient reconstituting human hematopoietic stem and progenitor cells within the CD34+ pool declines over time. Also, although some human immune responses are detectable upon vaccination with tetanus toxoid, or infection with human lymphotropic viruses such as EBV and HIV, these responses are somewhat weak compared to primary human responses, and are inconsistent in frequency. Thus, some factors sustaining human hematopoietic stem cells in bone marrow and immune responses in lymphoid tissues are either missing in the mouse environment, or are not cross-reactive on human cells. Human mesenchymal stem cells (MSCs) replicate as undifferentiated cells and are capable to differentiate to multiple mesenchymal tissues such as bone, cartilage, fat, muscle, tendon, as well as marrow and lymphoid organ stroma cells, at least in vitro (e.g. Pittenger et al., Science 1999). Moreover, it was shown that MSCs maintain CD34+ cells to some extend in vitro, and engraft at low frequency upon transplantation into adult immunodeficient mice or fetal sheep as detected by gene transcripts. We thus postulated that co-transplantation of cord blood CD34+ cells and MSCs into newborn mice might lead to engraftment of both cell types, and to provision of factors supporting CD34+ maintenance and immune system function. MSCs were isolated and expanded by plastic adherence in IMDM, supplemented with FCS and cortisone (first 3 weeks) from adult bone marrow, cord blood, and umbilical vein. To test their potential to support hemato-lymphopoiesis, MSCs were analyzed for human hemato-lymphotropic cytokine transcription and production by RT-PCR and ELISA, respectively. MSCs from all sources expressed gene-transcripts for IL-6, IL-7, IL-11, IL-15, SCF, TPO, FLT3L, M-CSF, GM-CSF, LIF, and SDF-1. Consistently, respective cytokines were detected in supernatants at the following, declining levels (pg/ml): IL-6 (10000-10E6) > SDF-1 > IL-11 > M-CSF > IL-7 > LIF > SCF > GM-CSF (0–450), while FLT3L and TPO were not detectable by ELISA. Upon i.h. transplantation of same passage MSCs (1X10E6) into sublethally irradiated (2x2 Gy) newborn Rag2−/−gc−/− mice, 2-week engraftment was demonstrated by species specific b2m-RT-PCR in thymus, spleen, lung, liver and heart in n=7 and additionally in thymus in n=3 out of 13 animals analyzed. Equally, GFP-RNA transcripts were detectable in the thymus for up to 6 weeks, the longest time followed, upon co-transplantation of same source CD34+ cells and retrovirally GFP-transduced MSCs in n=2 out of 4 animals. Further engraftment analysis of ongoing experiments will be presented. Overall, these results demonstrate that human MSC produce hemato-lymphoid cytokines and engraft in newborn transplanted Rag2−/−gc−/− mice, at least at early time-points analyzed. This model thus might allow studying hematopoietic cell and MSC-derived cell interaction, and might serve as a testing system for MSC delivered gene therapy in vivo.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 309-309
Author(s):  
Raphael Itzykson ◽  
Olivier Kosmider ◽  
Aline Renneville ◽  
Margot Morabito ◽  
Dorothee Buet ◽  
...  

Abstract Abstract 309 Background: The granulomonocytic (GM) hyperplasia of CMML has been attributed to GM-CSF hypersensitivity triggered by mutations in the CBL/RAS pathway according to the prevailing model in juvenile myelomonocytic leukemias (Kotecha Cancer Cell 2008). Recurrent mutations affecting epigenetic (eg TET2 and ASXL1) and splicing (eg SRSF2) machineries, or cytokine signaling (N/KRAS, CBL, JAK2) are present in most CMML cases, but none is specific of CMML. In 224 CMML patients (pts), we found TET2 (58%), SRSF2 (47%) and ASXL1 (38%) to be the most frequently mutated genes; only 66 (35%) cases had mutations in cytokine signaling genes (CBL, N/KRAS, JAK2, FLT3, KIT) (abstract submitted). We analyzed the differentiation of CD34+populations from genetically annotated CMML pts to address the mechanisms of GM hyperplasia in CMML. Methods: CD34+ populations (hematopoietic stem cells [HSC]; multipotent [MPP]; common myeloid [CMP] and granulomonocytic progenitors [GMP] defined by the CD34/CD38/CD90/CD123/CD45RA panel; Majeti Cell Stem Cell 2007) from 28 genetically annotated CMML and TET2 mutated MPN (n=8) or MDS (n=5) cases were cloned and genotyped for each mutation identified in mature CD14+ cells, and differentiated in vitro. Results: Early clonal dominance, with at least one mutation in > 75% of HSC/MPP clones, was found in all cases. In 18/19 pts with ≥2 mutations, a linear succession of mutations was found, with signaling mutations often following TET2 or ASXL1 mutations. Contrasting with the dominance of first events in HSC/MPP, second events reached clonal dominance in GMP, suggesting that they provide a selective advantage during the early steps of myeloid differentiation. We next analyzed the clonogenicity of peripheral blood (PB) CD34+ cells in the presence of GM-CSF (10 ng/mL) in 20 CMML cases and 4 controls. GM-CSF hypersensitivity (clonogenicity > mean+2SD of controls) was found in 7 (35%) cases. A mutation in a signaling gene was found in 6/7 pts (1 homozygous JAK2, 1 homozygous CBL, 4 heterozygous N/KRAS mutations), compared to 3/13 in pts without GM-CSF hypersensitivity (2 JAK2, 1 CBL, all heterozygous; P=.02) Median WBC was 29.2 and 11.4 G/L in pts with and without GM-CSF hypersensitivity, respectively (P=.08). The proportion of GMP in bone marrow (BM) CD34+cells was not significantly different in 33 CMML pts compared to 15 age-matched controls. Clonogenicity of GMP was similar in CMML and controls, except for a trend toward increased clonogenicity in pts with mutations in signaling genes. In contrast, the proportion of MPP and CMP was higher in CMML than in controls (P<.01 and P <.05, resp.). In erythromyeloid conditions (SCF, IL-3, G-CSF & EPO), both CMP and to a lesser extent MPP had an increased ability to form GM colonies at the expense of erythroid colonies (P <.001 and P<.01, resp.). Compared to healthy CMP, CMML CMP had and increased ability to mature into GMP in short-term culture, and increased PU.1 mRNA expression (P<.05), without significant changes in the levels of GATA1, CEBPA and CEBPB. Finally, in 16 pts, the proportion of GM colonies differentiating from CMP at the expense of erythroid colonies was inversely correlated to patient hemoglobin level (P=.002). Thus, premature GM differentiation of CMP, and to a lesser extent MPP, appears as the dominant mechanism of GM hyperplasia in CMML, whereas GM-CSF hypersensitivity and GMP expansion contribute only in the minority of patients with mutations in signaling genes. We next explored a possible link between early clonal dominance of TET2 mutations and premature GM differentiation. In TET2 mutated MPN (n=8) or MDS (n=5), the PB monocyte count was significantly correlated to the size of the TET2-mutated clone in the CD34+/CD38− (P=.006) rather than in the CD34+/CD38+ population (P=.08). Finally, functional invalidation by shRNA of TET2 in CD34+/CD38− followed by culture in the presence of SCF, IL-3, G-CSF & EPO caused a GM expansion that was not observed in CD34+/CD38+ cells. Similar analyses are underway for ASXL1. Conclusion: Our results suggest that early clonal dominance of mutations affecting the epigenetic machinery leading to premature GM differentiation of multipotent progenitors, rather than GM-CSF hypersensitivity, is the main mechanism of GM hyperplasia in CMML. This suggests a model whereby a single mutation can lead to different phenotypes, depending on the stage of differentiation at which the mutation has gained clonal dominance. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 143-143 ◽  
Author(s):  
Saar Gill ◽  
Sarah K Tasian ◽  
Marco Ruella ◽  
Olga Shestova ◽  
Yong Li ◽  
...  

Abstract Engineering of T cells with chimeric antigen receptors (CARs) can impart novel T cell specificity for an antigen of choice, and anti-CD19 CAR T cells have been shown to effectively eradicate CD19+ malignancies. Most patients with acute myeloid leukemia (AML) are incurable with standard therapies and may benefit from a CAR-based approach, but the optimal antigen to target remains unknown. CD123, the IL3Rα chain, is expressed on the majority of primary AML specimens, but is also expressed on normal bone marrow (BM) myeloid progenitors at lower levels. We describe here in vitro and in vivostudies to evaluate the feasibility and safety of CAR-based targeting of CD123 using engineered T cells (CART123 cells) as a therapeutic approach for AML. Our CAR consisted of a ScFv derived from hybridoma clone 32716 and signaling domains from 4-1-BB (CD137) and TCR-ζ. Among 47 primary AML specimens we found high expression of CD123 (median 85%, range 6-100%). Quantitative PCR analysis of FACS-sorted CD123dim populations showed measurable IL3RA transcripts in this population, demonstrating that blasts that are apparently CD123dim/neg by flow cytometry may in fact express CD123. Furthermore, FACS-sorted CD123dimblasts cultured in methylcellulose up-regulated CD123, suggesting that anti-CD123 immunotherapy may be a relevant strategy for all AML regardless of baseline myeloblast CD123 expression. CART123 cells incubated in vitro with primary AML cells showed specific proliferation, killing, and robust production of inflammatory cytokines (IFN-α, IFN-γ, RANTES, GM-CSF, MIP-1β, and IL-2 (all p<0.05). In NOD-SCID-IL2Rγc-/- (NSG) mice engrafted with the human AML cell line MOLM14, CART123 treatment eradicated leukemia and resulted in prolonged survival in comparison to negative controls of saline or CART19-treated mice (see figure). Upon MOLM14 re-challenge of CART123-treated animals, we further demonstrated robust expansion of previously infused CART123 cells, consistent with establishment of a memory response in animals. A crucial deficiency of tumor cell line models is their inability to represent the true clonal heterogeneity of primary disease. We therefore engrafted NSG mice that are transgenic for human stem cell factor, IL3, and GM-CSF (NSGS mice) with primary AML blasts and treated them with CART123 or control T cells. Circulating myeloblasts were significantly reduced in CART123 animals, resulting in improved survival (p = 0.02, n=34 CART123 and n=18 control animals). This observation was made regardless of the initial level of CD123 expression in the primary AML sample, again confirming that apparently CD123dimAML may be successfully targeted with CART123 cells. Given the potential for hematologic toxicity of CART123 immunotherapy, we treated mice that had been reconstituted with human CD34+ cells with CART123 cells over a 28 day period. We observed near-complete eradication of human bone marrow cells. This finding confirmed our finding of a significant reduction in methylcellulose colonies derived from normal cord blood CD34+ cells after only a 4 hour in vitro incubation with CART123 cells (p = 0.01), and was explained by: (i) low level but definite expression of CD123 in hematopoietic stem and progenitor cells, and (ii) up-regulation of CD123 upon myeloid differentiation. In summary, we show for the first time that human CD123-redirected T cells eradicate both primary human AML and normal bone marrow in xenograft models. As human AML is likely preceded by clonal evolution in normal or “pre-leukemic” hematopoietic stem cells (Hong et al. Science 2008, Welch et al. Cell 2012), we postulate that the likelihood of successful eradication of AML will be enhanced by myeloablation. Hence, our observations support CART-123 as a viable therapeutic strategy for AML and as a novel cellular conditioning regimen prior to hematopoietic cell transplantation. Figure 1. Figure 1. Disclosures: Gill: Novartis: Research Funding; American Society of Hematology: Research Funding. Carroll:Leukemia and Lymphoma Society: Research Funding. Grupp:Novartis: Research Funding. June:Novartis: Research Funding; Leukemia and Lymphoma Society: Research Funding. Kalos:Novartis: Research Funding; Leukemia and Lymphoma Society: Research Funding.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4107-4107
Author(s):  
Susan Hilgendorf ◽  
Hendrik Folkerts ◽  
Jan Jacob Schuringa ◽  
Edo Vellenga

Abstract In recent clinical studies, it has been shown that ASXL1 is frequently mutated in myelodysplastic syndrome (MDS), in particular in high-risk MDS patients who have a significant chance to progress to acute myeloid leukemia (AML). The majority of ASXL1 mutations leads to truncation of the protein and thereby to loss of its chromatin interacting and modifying domain, possibly facilitating malignant transformation. However, the functions of ASXL1 in human hematopoietic stem and progenitor cells are not well understood. In this study, we addressed whether manipulation of ASXL1-expression in the hematopoietic system in vitro mimics the changes observed in MDS-patients. We downregulated ASXL1 in CD34+ cord blood (CB) cells using lentiviral vectors containing several independent shRNAs and obtained a 40-50% reduction of ASXL1 expression. Colony Forming Cell (CFC) assays revealed that erythroid colony formation was significantly impaired (p<0.01) and, to some extent, granulocytic and macrophage colony formation as well (p<0.09, p<0.05 respectively). In myeloid suspension culture assays, we observed a modest reduction in expansion (two-fold at week 1) upon ASXL1 knockdown under myeloid conditions. In erythroid conditions, shASXL1 CB CD34+ cells showed a strong four-fold growth disadvantage, with a more than two-fold delay in erythroid differentiation. The reduced expansion was partly due to a significant increase in apoptosis (5.9% in controls vs. 14.0% shASXL1, p<0.02). The increase in cell death was restricted to differentiating cells, defined as CD71 bright- and CD71/GPA-double positive. In addition, we tested whether HSCs were affected by ASXL1 loss. Long-term culture-initiating cell (LTC-IC) assays revealed a two-fold decrease in stem cell frequency. To test dependency of shASXL1 CB 34+ cells on the microenvironment, transduced cells were cultured on MS5 bone marrow stromal cells with or without additional cytokines. shASXL1 CB CD34+ cells cultured on MS5 showed a modest two-fold reduction in cell growth at week 4. In the presence of EPO and SCF, we detected a growth disadvantage (three-fold at week 2) and a delay in erythroid differentiation, similar to what was observed in liquid culture. ASXL1 has been proposed to be an epigenetic modifier by recruiting/stabilizing the polycomb repressive complex 2 (PRC2). Active PRC2 can lead to trimethylation of H3K27 and silencing of certain loci. It has been proposed that perturbed ASXL1 activity may disturb PRC2 function, leading to reduced H3K27me3 and increased gene expression. Using an erythroid leukemic cell line, we downregulated ASXL1 and as a positive control EZH2, one of the core subunits of PRC2. We then performed ChIP and did PCR for several loci. Upon knockdown of ASXL1, we did not observe changes in H3K27me3 on any of he investigated loci. However, upon knockdown of EZH2 we observed more than 50% loss of the H3k27m3 mark for many of the loci. This implies that our observed phenotypes may not be conveyed via the PRC2 complex but maybe via an alternative pathway. Preliminary data revealed an increase in H2AK119ub, suggesting that the BAP1-ASXL1 complex may be involved. In patients, mutations in ASXL1 are frequently accompanied by a mutation of TP53. Possibly, this additional mutation is necessary to allow ASXL1-mutant induced transformation thereby bypassing the apoptotic response. Therefore, we modeled simultaneous loss of ASXL1 and TP53 using shRNA lentiviral vectors. Our data showed that while in primary CFC cultures shASXL1/shTP53 did not give rise to more colonies, an increase in colony-forming activity was observed upon replating of the cells. Furthermore, shASXL1/shTP53 transduced cells grown in erythroid liquid conditions revealed a decrease in apoptosis compared to the ASXL1 single mutation and an outgrowth of these double positive cells. Nevertheless, no transformation occurred in vitro. We therefore injected shASXL/TP53 transduced CB CD34+ in a humanized scaffold model in mice to determine whether transformation can occur in vivo. In conclusion, our data indicate that mutations in ASXL1 trigger an apoptotic response in CB CD34+ cells with a delay in differentiation, which leads to reduced stem and progenitor output in vitro without affecting H3K27me3. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1994-1994
Author(s):  
Mercedes Dessy-Rodriguez ◽  
Sara Fañanas-Baquero ◽  
Veronica Venturi ◽  
Salvador Payan ◽  
Cristian Tornador ◽  
...  

Abstract Congenital dyserythropoietic anemias (CDAs) are a group of inherited anemias that affect the development of the erythroid lineage. CDA type II is the most common one: it accounts for around 60% of all cases, and more than 600 cases have been reported so far. CDA II is caused by biallelic mutations in the SEC23B gene and is characterized by ineffective erythropoiesis with morphologic abnormalities of erythroblasts, hemolysis, and secondary iron overload, which is the most frequent complication. Patients usually suffer from variable degrees of jaundice, splenomegaly, and absolute reticulocyte count inadequate depending on the degree of anemia. Hydrops fetalis, aplastic crisis and gallstones are other associated clinical signs. CDA II bone marrow is characterized by the presence of more than 10% mature binucleated erythroblasts. Another distinctive feature of CDA II erythrocytes is hypoglycosylation of membrane proteins. The management of CDA II is generally limited to blood transfusion and iron chelation. Splenectomy has proved to reduce the number of transfusions in CDA II patients. However, allogenic hematopoietic stem cell transplant (HSCT) represents the only curative option for this disease. Autologous HSCT of genetically corrected cells will mean a definitive treatment for CDA II, overcoming the limitations of allogeneic HSCT, such as limited availability of HLA-matched donors, infections linked to immunosuppression or development of graft versus host disease. This strategy has been used to treat many inherited hematological diseases, including red blood cell diseases such as β-thalassemia, sickle cell disease or pyruvate kinase deficiency. Therefore, we have addressed a similar strategy to be applied to CDAII patients. Two different lentiviral vectors carrying either wild type or codon optimized versions of SEC23B cDNA (wtSEC23B LV or coSEC23B LV, respectively) under the control of human phosphoglycerate kinase promoter (PGK) have been developed. Taking advantage of a CDA II model, in which SEC23B knock-out was done in human hematopoietic progenitors through gene editing, we have determined the most effective SEC23B LV version and the most suitable multiplicity of infection (MOI) to compensate protein deficiency. SEC23B knock out human hematopoietic progenitors (CD34 + cells; 80% frame shift mutations; SEC23BKO) showed a sharp reduction in SEC23B protein level. Those SEC23BKO hematopoietic progenitors were transduced with both lentiviral vectors at MOIs ranged from 3 to 25. We observed that SEC23B protein reached physiological or even supraphysiological levels. In addition, the reduction in the number of erythroid colony forming units (CFUs) identified in SEC23BKO CD34 + cells, was partially restored in the LV transduced SEC23BKO progenitors. Significantly, we observed a clear correlation between the used MOI and the vector copy number (VCN) in the CFUs derived from transduced SEC23BKO CD34 + cells. Furthermore, SEC23BKO hematopoietic progenitors were subjected to an in vitro erythroid differentiation protocol. A sharp decrease in the cell growth throughout erythroid differentiation was observed in SEC23BKO condition. However, the transduction with any of SEC23B LVs at MOIs above 10 was able to recover cell expansion to values equal to wild type cells. Interestingly, total level of protein glycosylation during erythroid differentiation was enhanced after SEC23B LV transduction. Glycosylation level in wtSEC23B LV transduced SEC23BKO cells was most similar to the level in wild type cells. Then, we transduced peripheral blood-derived hematopoietic progenitors (PB-CD34 + cells) from a CDA II patient with wtSEC23B LV at MOI 25 and differentiated in vitro to erythroid cells. A complete restauration of SEC23B protein expression and a cell growth increase of wtSEC23B transduced CDAII was observed with vector copy numbers of 0.3 after 14 days under erythroid conditions. More importantly, we could find a decrease in the percentage of bi-/multinucleated erythroid cells generated in vitro after wtSEC23B LV transduction. In summary, SEC23B LV compensate the SEC23B deficiency in SEC23BKO and in CDAII hematopoietic progenitor cells, paving the way for gene therapy of autologous hematopoietic stem and progenitor cell as an alternative and feasible treatment for CDA II. Disclosures Bianchi: Agios pharmaceutics: Consultancy, Membership on an entity's Board of Directors or advisory committees. Sanchez: Bloodgenetics: Other: Co-Founder and promoter; UIC: Current Employment. Ramirez: VIVEBiotech: Current Employment. Segovia: Rocket Pharmaceuticals, Inc.: Consultancy, Research Funding. Quintana Bustamante: Rocket Pharmaceuticals, Inc.: Current equity holder in publicly-traded company.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 887-887
Author(s):  
Yusuke Nakauchi ◽  
Daniel Thomas ◽  
Rajiv Sharma ◽  
M. Ryan Corces ◽  
Andreas Reinisch ◽  
...  

Abstract The TET2 gene is frequently mutated in pre-leukemic hematopoietic stem cells in human acute myeloid leukemia (AML) and encodes for an enzyme that catalyzes the conversion of DNA 5-methylcytosine to 5-hydroxymethylcytosine. Recent studies suggest that (i) the product of this reaction can be enhanced using high dose ascorbate, and (ii) formation of the substrate 5-methylcytosine can be blocked with azacitidine. To understand the mechanisms of TET2 mutation-driven leukemogenesis, we developed two CRISPR/Cas9 approaches to disrupt the TET2 gene in primary human CD34+ HSPCs to mimic TET2-mutated pre-leukemia. First, in "Hit & Run," we use Cas9 with two single-guide RNAs (sgRNAs) to disrupt the TET2 gene within exon 3 (average indel frequencies=94.3%). Second, we using homology directed repair (HDR) of Cas9-mediated dsDNA breaks to disrupt the TET2 gene within exon 7 by inserting a GFP expression cassette to generate in vivo traceable cells. Thus, we have developed a tractable and cell-traceable model that recapitulates TET2-mutated pre-leukemia and clonal hematopoiesis. First, we examined the effects of TET2 disruption on human erythroid differentiation in vitro by culturing bulk CD34+ cells for 10 days under conditions that promote erythroid differentiation. Both Hit & Run and HDR (GFP+) TET2 disruption decreased CD71+CD235+ erythroid differentiation compared to control cells. Exposure to high dose ascorbate partially rescued the erythroid defect in TET2-disrupted cells (Hit & Run, n=3 independent experiments, p<0.02). This underscores the importance of TET2 in promoting erythroid differentiation and suggests TET2 mutations can exert a myeloid lineage skewing sensitive to ascorbate. Next, we investigated the effects of TET2 disruption on hematopoietic colony formation in methylcellulose. Both methods resulted in increased numbers of TET2-disrupted colonies compared to control (Hit & Run, n=4 independent experiments, p<0.0001; HDR, n=3 independent experiments, p<0.0001) and absence of erythroid BFU-E. Interestingly, analysis of indels in Hit & Run colonies showed that serial replating enriched for a 65 base pair deletion that results in a null allele, suggesting that TET2-disrupted cells outcompete normal HSPCs in vitro. Next, we transplanted control or TET2-disrupted Hit & Run CD34+ cells into NSG mice. Primary transplantation at 4 months showed no statistical differences in either engraftment rate (human CD45+) or differentiation (T/ B/ Myeloid cells), although the frequency of TET2 indels increased gradually in CD33+ cells. Intriguingly, 36 weeks after secondary transplantation, we detected a marked expansion of human myeloid lineage cells (lymphoid=22.1%, myeloid=73.0%, Mann-Whitney U, p=0.0485) and a particular increase in a CMML-like CD33highCD14+CD16- population. Furthermore, preliminary data from tertiary transplantation (8 weeks after transplantation) indicates persistent myeloid skewing in the bone marrow in some mice and expansion of TET2-mutant cells, suggesting a CMML-like disease. Finally, we used in vivo competition studies to determine if TET2-disrupted HSPCs are selectively targeted by azacitidine or ascorbate treatment compared to controls. NSG mice were intrafemorally transplanted with a one-to-one ratio of control and TET2-disrupted HSPCs, and 4 months later, these mice were treated with azacitidine (2.5mg/kg/dose, i.p. daily on days 1-5 of a 14-day cycle for 2 cycles) or ascorbate (4g/kg/dose, i.p. twice daily for a month). In PBS control treated mice, the percentage of TET2-disrupted cells increased from 29.3 to 71.6 over 4 weeks. Intriguingly, azacitidine slowed the expansion of TET2-disrupted cells in evaluable mice (delta increase of 42% in PBS vs 5% in azacitidine, p=0.036), but did not eradicate established TET2 pre-leukemia in all evaluable mice. Similarly, high dose ascorbate treatment slowed the rate of expansion to a lesser degree (delta increase of 42% in PBS vs 18.3% in ascorbate, p=0.14). Our data show that TET2 disruption in primary human HSPCs blocked erythroid differentiation, increased colony formation and replating, and caused myeloid skewing and a CMML-like disease in vivo after an extended period of time. In this model, azacitidine or ascorbate treatment slowed expansion of TET2-mutant human pre-leukemic clones raising the intriguing possibility of preventing CHIP progression to de novo AML. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3119-3119
Author(s):  
Fabrizia Urbinati ◽  
Zulema Romero Garcia ◽  
Sabine Geiger ◽  
Rafael Ruiz de Assin ◽  
Gabriela Kuftinec ◽  
...  

Abstract Abstract 3119 BACKGROUND: Sickle cell disease (SCD) affects approximately 80, 000 Americans, and causes significant neurologic, pulmonary, and renal injury, as well as severe acute and chronic pain that adversely impacts quality of life. Because SCD results from abnormalities in red blood cells, which in turn are produced from adult hematopoietic stem cells, hematopoietic stem cell transplant (HSCT) from a healthy (allogeneic) donor can benefit patients with SCD, by providing a source for life-long production of normal red blood cells. However, allogeneic HSCT is limited by the availability of well-matched donors and by immunological complications of graft rejection and graft-versus-host disease. Thus, despite major improvements in clinical care, SCD continues to cause significant morbidity and early mortality. HYPOTHESIS: We hypothesize that autologous stem cell gene therapy for SCD has the potential to treat this illness without the need for immune suppression of current allogeneic HSCT approaches. Previous studies have demonstrated that addition of a β-globin gene, modified to have the anti-sickling properties of fetal (γ-) globin (βAS3), to bone marrow (BM) stem cells in murine models of SCD normalizes RBC physiology and prevents the manifestations of sickle cell disease (Levassuer Blood 102 :4312–9, 2003). The present work seeks to provide pre-clinical evidence of efficacy for SCD gene therapy using human BM CD34+ cells modified with the bAS3 lentiviral (LV) vector. RESULTS: The βAS3 globin expression cassette was inserted into the pCCL LV vector backbone to confer tat-independence for packaging. The FB (FII/BEAD-A) composite enhancer-blocking insulator was inserted into the 3' LTR (Ramezani, Stem Cells 26 :32–766, 2008). Assessments were performed transducing human BM CD34+ cells from healthy or SCD donors with βAS3 LV vectors. Efficient (1–3 vector copies/cell) and stable gene transmission were determined by qPCR and Southern Blot. CFU assays demonstrated that βAS3 gene modified SCD CD34+ cells are fully capable of maintaining their hematopoietic potential. To demonstrate the effectiveness of the erythroid-specific bAS3 gene in the context of human HSPC (Hematopoietic Stem and Progenitor Cells), we optimized an in vitro model of erythroid differentiation of huBM CD34+ cells. We successfully obtained an expansion up to 700 fold with >80% fully mature enucleated RBC derived from CD34+ cells obtained from healthy or SCD BM donors. We then assessed the expression of the βAS3 globin gene by isoelectric focusing: an average of 18% HbAS3 over the total globin present (HbS, HbA2) per Vector Copy Number (VCN) was detected in RBC derived from SCD BM CD34+. A qRT-PCR assay able to discriminate HbAS3 vs. HbA RNA, was also established, confirming the quantitative expression results obtained by isoelectric focusing. Finally, we show morphologic correction of in vitro differentiated RBC obtained from SCD BM CD34+ cells after βAS3 LV transduction; upon induction of deoxygenation, cells derived from SCD patients showed the typical sickle shape whereas significantly reduced numbers were detected in βAS3 gene modified cells. Studies to investigate risks of insertional oncogenesis from gene modification of CD34+ cells by βAS3 LV vectors are ongoing as are in vivo studies to demonstrate the efficacy of βAS3 LV vector in the NSG mouse model. CONCLUSIONS: This work provides initial evidence for the efficacy of the modification of human SCD BM CD34+ cells with βAS3 LV vector for gene therapy of sickle cell disease. This work was supported by the California Institute for Regenerative Medicine Disease Team Award (DR1-01452). Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4202-4202
Author(s):  
Benjamin Goebel ◽  
Christian Brendel ◽  
Daniela Abriss ◽  
Sabrina Kneissl ◽  
Martijn Brugman ◽  
...  

Abstract Introduction Generally, CD34+ cells are used for genetic modification in gene therapy trials. CD34+ cells consist of a heterogeneous cell population with mostly limited long-term repopulating capabilities, resulting in low long-term engraftment levels in particular in those diseases in which gene modified cells lack a proliferative advantage over non-modified cells. Therefore, modifications in gene transfer vectors and gene transfer strategies are required to improve long-term clinical benefit in gene therapy patients. One particular attractive approach to solve this problem is the improvement of HSC based gene transfer by specifically targeting cells with long-term engraftment capabilities. Material and Methods We constructed lentiviral gene transfer vectors (LV) specifically targeting CD133+ cells, a cell population with recognized long-term repopulating capabilities. Targeting is achieved by pseudotyping with engineered measles virus (MV) envelope proteins. The MV glycoprotein hemagglutinin, responsible for receptor recognition, is blinded for its native receptors and displays a single-chain antibody specific for CD133 (CD133-LV). These vectors were compared to VSV-pseudotyped lentiviral vectors in in vitro and in vivocompetitive repopulation assays using mobilized peripheral blood CD34+ cells. Results Superior transduction of isolated human hematopoietic stem cell populations (CD34+CD38- or CD34+CD133+ cells) compared to progenitor cell populations (CD34+CD38+ or CD34+CD133-) could be shown using the newly developed CD133-LV. Transduction of total CD34+ cells with CD133-LV vectors resulted in stable gene expression and gene marked cells expanded in vitro, while the number of VSV-G-LV transduced CD34+ cells declined over time. Competitive repopulation experiments in NSG mice showed a significantly improved engraftment of CD133-LV transduced HSCs. At ∼12 weeks post-transplantation gene marked hematopoiesis was dominated by the progeny of CD133-LV transduced cells in 42 out of 52 transplanted animals in the bone marrow and 39 out of 45 transplanted animals in the spleen, respectively. Consistent with this data we could show that stem cell content in the CD133-LV transduced population is about five times higher compared to the VSV-transduced population using a limiting dilution competitive repopulation assay (LDA-CRU). Experiments showing proof of principle for the application of this technology for the correction of Chronic Granulomatous Disease (XCGD) using patient derived CD34+ cells are currently ongoing. Discussion In conclusions this new strategy may be promising to achieve improved long-term engraftment in patients treated by gene therapy. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2456-2456
Author(s):  
Hal E. Broxmeyer ◽  
Scott Cooper ◽  
Giao Hangoc ◽  
Timothy B. Campbell

Abstract CD26 is a dipeptidylpeptidase IV (DPPIV) found on hematopoietic stem (HSC), progenitor (HPC) and other cells that cleaves dipeptides from the N-terminus after a proline or alanine. Some members of the chemokine family of cytokines, including SDF-1/CXCL12, have a CD26/DPPIV truncation site. We, and subsequently others, demonstrated that inhibition/deletion of CD26/DPPIV on target/donor human (hu) and mouse (mu) HSC/HPC enhances in vitro chemotaxis, and in vivo homing and engraftment of HSC/HPC. We also reported that inhibition of CD26/DPPIV on target cells increases HPC survival, replating, and ex-vivo expansion enhancing capabilities of SDF-1/CXCL12, and the inhibitory activity of a select group of myelosuppressive chemokines on proliferation of HPC. An amino acid sequence search identified putative CD26/DPPIV truncation sites in a number of colony stimulating factors (CSFs), including human (hu) and mouse (mu) GM-CSF, mu G-CSF, hu IL-3, and hu and mu EPO. These truncation sites were not apparent in hu G-CSF, mu IL-3, or hu and mu M-CSF, nor were they present in hu and mu stem cell factor (SCF) or Flt3-ligand (FL). We hypothesized that inhibition/deletion of CD26/DPPIV on mu bone marrow (BM) and inhibition on hu cord blood (CB) would enhance the capacity of CSFs containing putative CD26/DPPIV truncation sites to stimulate colony formation of HPC in vitro. Towards assessing this hypothesis, we used Diprotin A (Ile-Pro-Ile), a known CD26/DPPIV inhibitor for mu and hu cells, and CD26 −/− mu BM. Mu cytokines were assessed for activity on mu BM, and hu cytokines on hu CB, all in dose-response fashion. Hu EPO, which is not species specific, was tested on mu and hu cells. Results demonstrated that one hour pre-treatment of mu BM cells with Diprotin A, with or without subsequently washing cells prior to plating cells in semi-solid culture medium with non-treated cytokines, or use of CD26 −/− mu BM cells, gave a two-fold or greater enhancement of CFU-GM-, CFU-G-, and BFU-E-colony formation of cells respectively stimulated by mu GM-CSF, mu G-CSF, and hu EPO. The CSF activities of mu M-CSF for CFU-M, and mu IL-3 for CFU-GM were not enhanced by inhibition/deletion of CD26/DPPIV. It was also noted that pretreatment of hu CB cells with Diprotin A, with or without washing the cells prior to plating them in culture, enhanced colony formation of CFU-GM stimulated by hu GM-CSF or hu IL-3, and of BFU-E stimulated by hu EPO. This pretreatment of hu CB cells did not influence stimulation of CFU-G by hu G-CSF, or CFU-M by hu M-CSF. Stimulation of cells with two CSFs results in additive to greater than additive HPC colony formation compared to that of each CSF alone. When both CSFs had putative CD26/DPPIV truncation sites, colony formation by HPC was further increased by pretreatment of target cells with Diprotin A. Pretreatment of cells with Diprotin A did not enhance colony formation of mu BM or hu CB cells each respectively stimulated with mu/hu SCF or mu/hu FL alone, nor did it enhance the synergistic effects noted when SCF was used in combination with EPO, GM-CSF, IL-3, G-CSF or M-CSF, or when FL was added with GM-CSF, IL-3, G-CSF or M-CSF. These results demonstrate that inhibition/deletion of CD26/DPPIV on target populations of cells containing HPC results in enhanced stimulating capacity of CSFs with, but not without, this putative truncation site. Thus, CD26/DPPIV adds another level of potential control of the regulation of hematopoiesis, information of practical relevance for understanding and possibly manipulating recovery of hematopoiesis after stress or HSC transplantation.


Sign in / Sign up

Export Citation Format

Share Document