scholarly journals Effect of Daratumumab-Containing Induction on CD34+ Hematopoietic Stem Cells before Autologous Stem Cell Transplantation in Multiple Myeloma

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2764-2764
Author(s):  
Ondrej Venglar ◽  
Tereza Sevcikova ◽  
Anjana Anilkumar Sithara ◽  
Veronika Kapustova ◽  
Jan Vrana ◽  
...  

Abstract Introduction: Daratumumab (Dara) is an anti-CD38 monoclonal antibody representing a novel treatment agent for multiple myeloma (MM). Nonetheless, several studies have reported a Dara-related impairment of CD34+ hematopoietic stem cell (HSC) mobilization and post-autologous stem cell transplantation (ASCT) complications, including low yields of mobilized HSCs and delayed neutrophil engraftment. Impact of Dara on the mobilization process and HSCs remains poorly understood even though sufficient yields of CD34+ cells are necessary for a successful ASCT and subsequent patient recovery. Aims: To compare the effect of the Dara-containing (Dara-Bortezomib-Dexamethasone [D-VCd]) and conventional (Bortezomib-Thalidomide-Dexamethasone [VTd]) therapy on CD34+ HSCs. Methods: Transplant eligible MM patients were treated with D-VCd or VTd induction regimen followed by a cyclophosphamide + G-CSF mobilization and a high-dose melphalan D -1 before ASCT. Flow cytometry (FCM) screening of CD34+ subsets was performed in the bone marrow (BM) or apheresis product (AP) at three consecutive time points: 1) diagnostic BM (DG), 2) mobilization AP (MOB), 3) a day prior ASCT BM (D-1). Furthermore, RNA sequencing (RNAseq) of sorted CD34+ cells was performed on total RNA with ribo-depletion protocol in AP after the induction. D-VCd samples had lower RNA yields thus the D-VCd or VTd groups were processed as independent batches. Results: Clinical data revealed no significant differences in mobilization (p >0.050) likely due to a small cohort sizes (D-VCd n=5 vs VTd n=9), though a trend towards worse performance in D-VCd was observed. Median CD34+ cell yield was 3.08 vs 10.56 x 10 6/kg. Platelet recovery of >20x10 9/L was D+14 vs D+12 (range: 11-18 vs 10-16). Neutrophil recovery of >0.5x10 9/L was D+12 in both groups (range: 11-17 vs 11-12). In FCM analysis, DG (n=14), MOB D-VCd (n=5) vs VTd (n=9), D-1 D-VCd (n=7) vs VTd (n=15) were compared. CD34+ frequency (Fig. 1A) difference in MOB D-VCd vs VTd was insignificant (median: 1.15% vs 1.89%), whereas CD34+ fraction dropped in D-1 D-VCd (median: 0.52% vs 0.72%, p=0.027), albeit there was no significant reduction in D-1 D-VCd vs initial DG (median: 0.52% vs 0.45%). Differences in the distribution of certain HSC subsets were detected in the CD34+ pool (Fig. 1B-E). Frequency of multipotent progenitors (MPPs) (Fig. 1B) was increased in MOB D-VCd (median: 82.1% vs 66.2%, p=0.004). Frequency of lympho-myeloid-primed progenitor + granulocyte-monocyte progenitor (LMPP+GMP) (Fig. 1C) subset was reduced in D-VCd in both MOB (median: 1.7% vs 16.9%, p=0.042) and D-1 (median: 5.3% vs 14.0%; p=0.026). Erythro-myeloid progenitors (EMPs) (Fig. 1D) were reduced in MOB D-VCd (median: 10.7% vs 19.5%, p=0.042), while the frequency of EMPs increased in D-1 D-VCd (median: 20.8% vs 12.4%, p=0.045). No considerable differences were found in the expression of adhesion molecules CD44/HCAM or CD184/CXCR4. CD38 was strongly diminished in the whole D-VCd CD34+ fraction of MOB and D-1. To understand whether the differences in the mobilization efficacy after D-VCd induction were reflected in the expression profile of mobilized CD34+ cells, differential expression analysis was performed. Overall 133 significantly deregulated genes (p<0.05; log fold change >(-)1) between cohorts (D-VCd n=5 vs VTd n=5) were revealed (Fig. 2). Pathway analysis showed cellular response and localization as the most deregulated categories. The list of deregulated genes contained 25% of non-coding RNAs, some of which were linked to a protein localization in the cell (RN7SL1/2). The expression of adhesion molecules was inspected independently. Out of 59 HSC hallmark genes, only 8 were significantly altered in D-VCd. Interestingly, the main homing molecule CXCR4 seemed to be downregulated in D-VCd, while integrins A3 and B4 were upregulated. Conclusions: Despite the limited cohort sizes, a prospective trend of delayed neutrophil and platelet recovery was observed after D-VCd therapy. FCM analysis revealed a significant reduction of CD34+ subsets responsible, among others, for a reconstitution of neutrophils and megakaryocytes. A strong signal in transcriptome data which would potentially explain differential mobilization in D-VCd cohort was not detected, nevertheless, several genes with adhesive/homing and stem cell differentiation function were indeed altered. The results warrant further investigation. Figure 1 Figure 1. Disclosures Hajek: BMS: Consultancy, Honoraria, Research Funding; AbbVie: Consultancy, Honoraria; Novartis: Consultancy, Research Funding; Janssen: Consultancy, Honoraria, Research Funding; Amgen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Pharma MAR: Consultancy, Honoraria; Celgene: Consultancy, Honoraria, Research Funding; Takeda: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding.

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 38-39 ◽  
Author(s):  
Laurent Garderet ◽  
Hafida Ouldjeriouat ◽  
Mohamed-Amine Bekadja ◽  
Elisabeth Daguenet ◽  
Laure Vincent ◽  
...  

Background: High dose melphalan (HDM) followed by autologous hematopoietic stem cell transplantation (ASCT) is widely used in multiple myeloma (MM) patients as upfront and salvage therapy. However, the safety and efficacy of ASCT in patients with renal insufficiency (RI) is controversial, which have led to an inconsistent arbitrary cut-off for creatinine clearance (CrCl) for performing ASCT. Here we analyzed prospectively the outcomes of MM patients with severe RI who underwent ASCT. Methods: We enrolled prospectively 50 newly diagnosed MM patients who had a serum CrCl of <40 mL/min at the time of ASCT and an age of up to 65 years. They all received bortezomib-based induction therapy and had achieved at least a partial response before proceeding to ASCT. The recommended dose of melphalan was 140 mg/m2 and it was advised to infuse at least 3 x106/kg autologous CD34+ cells. Consolidation/maintenance post-ASCT was according to the physician's choice. The primary endpoint was transplant related mortality. Results: The patients characteristics at enrollment are given in Table 1. We focused on 44 patients who were beyond 3 months post-ASCT. Light chain MM was frequent (12%), 10% had high risk cytogenetics, 36% increased serum LDH and 10% extramedullary disease. Induction chemotherapies included bortezomib plus IMiDs in 25/44 patients with ≥2 lines of chemotherapy in 12/44. The pre-transplant disease status was sCR in =5%, CR in =15%, VGPR in =39%, and PR in =41% of patients. The number of days of cytapheresis was 2 or less in 95% of cases and the median number of CD34+ cells collected was 3.3 x 106 (1.3-9.5). The median time from diagnosis to ASCT was 175 days (103-307). HDM was 140 mg/m2 in 42/44 patients and 200 mg/m2 in 2/44. All, except two, received consolidation post ASCT (34% missing) and 52% had maintenance therapy (all lenalidomide except two receiving bortezomib) and 7% had no maintenance (41% pending). Toxicity: We observed one death during the first 100 days post-ASCT, secondary to a septic shock on day 42. The median time to neutrophil engraftment was 12 days (9-68) and to platelet engraftment 13 days (10-70). Among patients receiving RBC transfusions (75%) and platelet transfusions (84%), the median number of RBC transfusions was 3 (1-6) and that of platelet transfusions was 3 (1-10). Response: Nine patients (70%) achieved dialysis independence from the time of diagnosis: 13 patients were on dialysis at diagnosis, 5 at the time of ASCT and 4 three months post-ASCT. Renal function improved post-ASCT in 34% of patients, 14% moving from a CrCl of <40 mL/min to 60 mL/min and 20% to above 60 mL/min. No patient experienced worsened renal function following ASCT. At 100 days post-ASCT, the hematological response had improved in 49% of patients, from PR to VGPR (18%), from PR to CR/sCR (11%) and from VGPR to CR/sCR (20%). The best response obtained was 5% PR, 34% VGPR, 47% CR and 11% sCR with one patient relapsing. Conclusions: In this preliminary analysis, HDM with ASCT proved to be safe and effective in MM patients with RI at transplant. We observed one death among 44 patients within the first 3 months post-ASCT. A more detailed report of the toxicity will be presented during the meeting along with the survival. Disclosures Vincent: takeda: Membership on an entity's Board of Directors or advisory committees, Other: Congress support; Celgene: Membership on an entity's Board of Directors or advisory committees, Other: Congress support; janssen: Membership on an entity's Board of Directors or advisory committees, Other: Congress support. Mohty:Jazz Pharmaceuticals: Consultancy, Honoraria, Research Funding, Speakers Bureau; BMS: Consultancy, Honoraria, Research Funding, Speakers Bureau; Novartis: Consultancy, Honoraria, Research Funding, Speakers Bureau; Stemline: Consultancy, Honoraria, Research Funding, Speakers Bureau; Janssen: Consultancy, Honoraria, Research Funding, Speakers Bureau; Celgene: Consultancy, Honoraria, Research Funding, Speakers Bureau; Takeda: Consultancy, Honoraria, Research Funding, Speakers Bureau; GSK: Consultancy, Honoraria, Research Funding, Speakers Bureau; Sanofi: Consultancy, Honoraria, Research Funding, Speakers Bureau; Amgen: Consultancy, Honoraria, Research Funding, Speakers Bureau. Karlin:AbbVie: Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Travel support; Celgene/Bristol-Myers Squibb: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Travel support; Takeda: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Travel support, personal fees; GlaxoSmithKline: Honoraria, Membership on an entity's Board of Directors or advisory committees; Celgene: Other: Personal fees; Sanofi: Honoraria; Amgen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Travel support, personal fees; Janssen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Travel support, personal fees. Morel:Janssen: Honoraria. Rubio:Medac: Consultancy; Gilead: Honoraria; MSD: Honoraria; Novartis: Honoraria; Neovii: Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1962-1962
Author(s):  
Sandhya R. Panch ◽  
Brent R. Logan ◽  
Jennifer A. Sees ◽  
Bipin N. Savani ◽  
Nirali N. Shah ◽  
...  

Introduction: Approximately 7% of unrelated hematopoietic stem cell (HSC) donors are asked to donate a subsequent time to the same or different recipient. In a recent large CIBMTR study of second time donors, Stroncek et al. incidentally found that second peripheral blood stem cell (PBSC) collections had lower total CD34+ cells, CD34+ cells per liter of whole blood processed, and CD34+ cells per kg donor weight. Based on smaller studies, the time between the two independent PBSC donations (inter-donation interval) as well as donor sex, race and baseline lymphocyte counts appear to influence CD34+ cell yields at subsequent donations. Our objective was to retrospectively evaluate factors contributory to CD34+ cell yields at subsequent PBSC donation amongst NMDP donors. Methods. The study population consisted of filgrastim (G-CSF) mobilized PBSC donors through the NMDP/CIBMTR between 2006 and 2017, with a subsequent donation of the same product. evaluated the impact of inter-donation interval, donor demographics (age, BMI, race, sex, G-CSF dose, year of procedure, need for central line) and changes in complete blood counts (CBC), on the CD34+ cell yields/liter (x106/L) of blood processed at second donation and pre-apheresis (Day 5) peripheral blood CD34+ cell counts/liter (x106/L) at second donation. Linear regression was used to model log cell yields as a function of donor and collection related variables, time between donations, and changes in baseline values from first to second donation. Stepwise model building, along with interactions among significant variables were assessed. The Pearson chi-square test or the Kruskal-Wallis test compared discrete variables or continuous variables, respectively. For multivariate analysis, a significance level of 0.01 was used due to the large number of variables considered. Results: Among 513 PBSC donors who subsequently donated a second PBSC product, clinically relevant decreases in values at the second donation were observed in pre-apheresis CD34+ cells (73.9 vs. 68.6; p=0.03), CD34+cells/L blood processed (32.2 vs. 30.1; p=0.06), and total final CD34+ cell count (x106) (608 vs. 556; p=0.02). Median time interval between first and second PBSC donations was 11.7 months (range: 0.3-128.1). Using the median pre-apheresis peripheral blood CD34+ cell counts from donation 1 as the cut-off for high versus low mobilizers, we found that individuals who were likely to be high or low mobilizers at first donation were also likely to be high or low mobilizers at second donation, respectively (Table 1). This was independent of the inter-donation interval. In multivariate analyses, those with an inter-donation interval of >12 months, demonstrated higher CD34+cells/L blood processed compared to donors donating within a year (mean ratio 1.15, p<0.0001). Change in donor BMI was also a predictor for PBSC yields. If donor BMI decreased at second donation, so did the CD34+cells/L blood processed (0.74, p <0.0001). An average G-CSF dose above 960mcg was also associated with an increase in CD34+cells/L blood processed compared to donors who received less than 960mcg (1.04, p=0.005). (Table 2A). Pre-apheresis peripheral blood CD34+ cells on Day 5 of second donation were also affected by the inter-donation interval, with higher cell counts associated with a longer time interval (>12 months) between donations (1.23, p<0.0001). Further, independent of the inter-donation interval, GCSF doses greater than 960mcg per day associated with higher pre-apheresis CD34+ cells at second donation (1.26, p<0.0001); as was a higher baseline WBC count (>6.9) (1.3, p<0.0001) (Table 2B). Conclusions: In this large retrospective study of second time unrelated PBSC donors, a longer inter-donation interval was confirmed to be associated with better PBSC mobilization and collection. Given hematopoietic stem cell cycling times of 9-12 months in humans, where possible, repeat donors may be chosen based on these intervals to optimize PBSC yields. Changes in BMI are also to be considered while recruiting repeat donors. Some of these parameters may be improved marginally by increasing G-CSF dose within permissible limits. In most instances, however, sub-optimal mobilizers at first donation appear to donate suboptimal numbers of HSC at their subsequent donation. Disclosures Pulsipher: CSL Behring: Membership on an entity's Board of Directors or advisory committees; Miltenyi: Research Funding; Bellicum: Consultancy; Amgen: Other: Lecture; Jazz: Other: Education for employees; Adaptive: Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Medac: Honoraria. Shaw:Therakos: Other: Speaker Engagement.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3229-3229 ◽  
Author(s):  
Ivana N Micallef ◽  
Eric Jacobsen ◽  
Paul Shaughnessy ◽  
Sachin Marulkar ◽  
Purvi Mody ◽  
...  

Abstract Abstract 3229 Poster Board III-166 Introduction Low platelet count prior to mobilization is a significant predictive factor for mobilization failure in patients with non-Hodgkin's lymphoma (NHL) or Hodgkin's disease (HD) undergoing autologous hematopoietic stem cell (HSC) transplantation (auto-HSCT; Hosing C, et al, Am J Hematol. 2009). The purpose of this study is to assess the efficacy of HSC mobilization with plerixafor plus G-CSF in patients with concomitant thrombocytopenia undergoing auto-HSCT. Methods Patients who had failed successful HSC collection with any mobilization regimen were remobilized with plerixafor plus G-CSF as part of a compassionate use program (CUP). Mobilization failure was defined as the inability to collect 2 ×106 CD34+ cells/kg or inability to achieve a peripheral blood count of ≥10 CD34+ cells/μl without having undergone apheresis. As part of the CUP, G-CSF (10μg/kg) was administered subcutaneously (SC) every morning for 4 days. Plerixafor (0.24 mg/kg SC) was administered in the evening on Day 4, approximately 11 hours prior to the initiation of apheresis the following day. On Day 5, G-CSF was administered and apheresis was initiated. Plerixafor, G-CSF and apheresis were repeated daily until patients collected the minimum of 2 × 106 CD34+ cells/kg for auto-HSCT. Patients in the CUP with available data on pre-mobilization platelet counts were included in this analysis. While patients with a platelet count <85 × 109/L were excluded from the CUP, some patients received waivers and were included in this analysis. Efficacy of remobilization with plerixafor + G-CSF was evaluated in patients with platelet counts ≤ 100 × 109/L or ≤ 150 × 109/L. Results Of the 833 patients in the plerixafor CUP database, pre-mobilization platelet counts were available for 219 patients (NHL=115, MM=66, HD=20 and other=18.). Of these, 92 patients (NHL=49, MM=25, HD=8 and other=10) had pre-mobilization platelet counts ≤ 150 × 109/L; the median platelet count was 115 × 109/L (range, 50-150). The median age was 60 years (range 20-76) and 60.4% of the patients were male. Fifty-nine patients (64.1%) collected ≥2 × 109 CD34+ cells/kg and 13 patients (14.1%) achieved ≥5 × 106 CD34+ cells/kg. The median CD34+ cell yield was 2.56 × 106 CD34+ cells/kg. The proportion of patients proceeding to transplant was 68.5%. The median time to neutrophil and platelet engraftment was 12 days and 22 days, respectively. Similar results were obtained when efficacy of plerixafor + G-CSF was evaluated in 29 patients with platelet counts ≤ 100 × 109/L (NHL=12, MM=10, HD=3 and other=4). The median platelet count in these patients was 83 × 109/L (range, 50-100). The median age was 59 years (range 23-73) and 60.4% of the patients were male. The minimal and optimal cell dose was achieved in 19(65.5%) and 3(10.3%) patients, respectively. The median CD34+ cell yield was 2.92 × 106 CD34+ cells/kg. The proportion of patients proceeding to transplant was 62.1%. The median time to neutrophil and platelet engraftment was 12 days and 23 days, respectively. Conclusions For patients mobilized with G-CSF alone or chemotherapy ±G-CSF, a low platelet count prior to mobilization is a significant predictor of mobilization failure. These data demonstrate that in patients with thrombocytopenia who have failed prior mobilization attempts, remobilization with plerixafor plus G-CSF allows ∼65% of the patients to collect the minimal cell dose to proceed to transplantation. Thus, in patients predicted or proven to be poor mobilizers, addition of plerixafor may increase stem cell yields. Future studies should investigate the efficacy of plerixafor + G-CSF in front line mobilization in patients with low platelet counts prior to mobilization. Disclosures Micallef: Genzyme Corporation: Membership on an entity's Board of Directors or advisory committees, Research Funding. Jacobsen:Genzyme Corporation: Research Funding. Shaughnessy:Genzyme Corporation: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. Marulkar:Genzyme Corporation: Employment, Equity Ownership. Mody:Genzyme Corporation: Employment, Equity Ownership. van Rhee:Genzyme Corporation: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2258-2258
Author(s):  
Tomer M Mark ◽  
Adriana C Rossi ◽  
Roger N Pearse ◽  
Morton Coleman ◽  
David Bernstein ◽  
...  

Abstract Abstract 2258 Background: Prior use of lenalidomide beyond 6 cycles of therapy in the treatment of multiple myeloma (MM) has been shown to negatively impact stem cell yield, but this phenomenon can be overcome with the addition of high-dose cyclophosphamide to standard G-CSF mobilization. We hypothesized that the use of plerixafor (Mozobil®) would compare similarly to chemotherapy in rescuing the ability to collect stem cells in lenalidomide-treated myeloma. Methods: We performed a retrospective study comparing the efficacy of plerixafor + G-CSF mobilization (PG) to chemotherapy + G-CSF (CG) (either high-dose cyclophosphamide at 3g/m2 or DCEP [4-day infusional dexamethasone/ cyclophosphamide/ etoposide/cisplatin]) in 49 consecutive stem cell collection attempts in patients with MM exposed to prior lenalidomide. The primary endpoint was the ability to collect sufficient stem cells for at least two transplants (minimum 5×106 CD34+ cells/kg), comparing results in terms of total exposure to lenalidomide and time elapsed from lenalidomide exposure until the mobilization attempt. The secondary endpoint was number of apheresis days required to meet collection goal. Resilts: Twenty-four patients underwent PG mobilization and twenty-five with CG (21 with G-CSF + cyclophosphamide, 4 with G-CSF+DCEP). The two groups did not differ in terms of total amount of lenalidomide exposure: median number of lenalidomide cycles for patients mobilized with PG was 6.5 (range 1.2–86.6), vs. 6 (range 2–21.6), for patients mobilized with CG (P = 0.663). The median time between mobilization and last lenalidomide dose was also similar between the two groups: 57.5 (range 12–462) days for PG vs. 154 (range 27–805) days for CG (P = 0.101). There was an equivalent rate of successful collection of 100% for PG and 96% for CG, P = 0.322. One patient failed collection in the CG group due to emergent hospitalization for septic shock during a period of neutropenia; no patient collected with PG had a serious adverse event that interrupted the collection process. Stem cell yield did not differ between the two arms (13.9 vs. 18.8 × 106 million CD34+ cells/kg for PG vs. CG respectively, P = 0.083). Average time to collection goal was also equal, with a median of time of 1 day required in both groups, (range 1–2 days for PG, 1–5 days for CG, P = 0.073). There was no relationship between amount of lenalidomide exposure and stem cell yield with either PG (P = 0.243) or CG (P = 0.867). Conclusion: A plerixafor + G-CSF mobilization schedule is equivalent in efficacy to chemotherapy + G-CSF in obtaining adequate numbers of stem cells for two autologous stem cell transplants in patients with MM exposed to lenalidomide; however, PG may be a less toxic approach than chemomobilization. Number of lenalidomide cycles has no impact on chances of stem cell collection success using either method. Disclosures: Mark: Celgene Corp: Speakers Bureau; Millenium Corp: Speakers Bureau. Zafar: Celgene Corp: Speakers Bureau. Niesvizky: Celgene: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Millenium: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Onyx: Consultancy, Research Funding.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2452-2452
Author(s):  
John N. Allan ◽  
David Jayabalan ◽  
Ruben Niesvizky ◽  
Tomer M Mark ◽  
Roger Pearse ◽  
...  

Abstract Introduction Proteasome inhibitor (PI) use in patients (pts) with multiple myeloma (MM) has been associated with increased hematopoietic stem/progenitor cell (HSPC) collection yields in both induction and autologous stem cell collection settings (Niesvizky et al., 2013). Animal models have confirmed this observation (Ghobadi et al., 2012). The mechanism remains unclear, but there is suggestion PI treatment affects pathways associated with HSPC anchoring and migration (Niesvizky et al., 2013). The effect of PIs on HSPC migration in the absence of filgastrim (G-CSF) stimulation remains unknown. We sought to characterize the molecular mechanisms of HSPC mobilization in a cohort of pts undergoing active PI treatment. Methods MM pts undergoing treatment with PIs were consented to obtain peripheral blood (PB) under IRB approval. Pts were eligible if they had symptomatic MM and were undergoing treatment with a PI. Pts receiving alkylating chemotherapy (such as cyclophosphamide) in combination with a PI were excluded. Pts were enrolled on the first day of a new cycle containing a PI. PB was drawn prior to administration of the PI (T0) and just prior to the next dose of PI, 24 or 72 hours later (T1), depending on whether the pt was receiving carfilzomib or bortezomib, respectively. PB mononuclear cells were collected and purified with Ficoll-Paque, viably frozen in CS-10 freezing medium and stored in liquid nitrogen. Serum samples were collected after a 1:2 dilution with PBS and stored at -80oF. Cells were later thawed to perform multiparameter flow cytometry and colony forming unit (CFU) assays. Multiparameter flow cytometry was performed using a BD LSR-II and analyzed using FloJo V9.0 software. Cells were gated on CD45dim SSC-lo characteristics. HSPCs were defined as CD34+/CD133+. Pts were stratified into 3 groups (>2, 1-2, <1) based on fold change in peripheral HSPCs from baseline T0. Expression of surface markers including CD38, CD184, CD202b, CD25, CD90 and CD31 within the HSPC population, were analyzed. Serum protein concentrations were analyzed using ELISAs. Results Twenty-three pts consented and collected at the 2 prespecified time points. Six pts (26%) increased the percentage of peripheral HSPCs>2 fold. Nine (39%) and 8 (35%) pts increased the percentage of HSPCs 1-2 fold and <1 fold over T0 percentage, respectively. There were no statistical differences within the 3 groups, in baseline characteristics, prior chemotherapy, use of IMIDs, or radiation exposure history. There was a significant positive correlation between peripheral HSPC fold change and CFU formation p=0.003 indicating the mobilized HSPC population’s capacity to form progeny. Furthermore, there was a significant negative correlation between fold change of HSPCs and CD90 expression on CD34+ CD133+ CD38- stem cell populations at T1 p=0.032. To determine changes in serum proteins as a result of PI treatment that could contribute to HSPC mobilization we evaluated TGF-ß levels in 13 pt plasma samples. Two pts from the>2fold group were available and revealed TGF-ß levels increase 67.24 pg/mL compared to a decrease of 17.67 pg/mL in 5 pts in the <1fold group trending towards significance p=0.094. Baseline levels of TGF-ß in the two groups,>2fold and <1fold were 18.1 pg/mL and 30.1 pg/mL respectively, which was not significant. Discussion Observations have noted increased HSPC yields in animal models and MM pts after treatment with PIs in both induction and mobilizing regimens (Ghobadi et al., 2012; Niesvizky et al., 2013). Here we demonstrate that treatment with PIs is associated with increases in peripheral HSPC percentages in approximately 2/3 of MM pts despite the lack of concurrent G-CSF. Decreased CD90 has previously been observed in peripherally mobilized HSPC products and, similar to TGF-ß, plays a role in regulation of Rhokinase GTPase pathways known to affect migration and adherence of many different cell types (Tsuchiya et al., 1997; Kim et al., 2006; Wen et al., 2013; Kim et al., 2014). Our study shows a correlation between decreased CD90 expression and fold increase of peripheral HSPCs. We also found an increase in TGF-ß serum levels after treatment in the>2fold group compared to the <1fold group, which may approach statistical significance with more sampling. These findings may help understand the failure to collect adequate HSPCs in a subset of MM pts and could highlight new pathways to disrupt and improve HSPC mobilization regimens. Disclosures Niesvizky: Onyx Pharmaceuticals: Consultancy, Research Funding, Speakers Bureau; Celgene: Consultancy, Research Funding, Speakers Bureau; Millennium: The Takeda Oncology Company: Consultancy, Research Funding, Speakers Bureau. Mark:Onyx: Research Funding, Speakers Bureau; Millennium: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau. Rossi:Celgene: Speakers Bureau.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2260-2260 ◽  
Author(s):  
Arnon Nagler ◽  
Avichai Shimoni ◽  
Irit Avivi ◽  
Jacob M. Rowe ◽  
Katia Beider ◽  
...  

Abstract Abstract 2260 Background: BKT140 is a high affinity CXCR4 inhibitor with an extended K off-rate. Pre-clinical studies in animal models with BKT140 showed a robust mobilization of white blood cells (WBC) and hematopoietic stem cells (HSC). Furthermore, BKT140 also showed a direct anti-tumor effect against human-derived multiple myeloma (MM), lymphoma and primary leukemia cells and cell lines in vitro and in vivo, causing significant apoptosis. Aims: To assess BKT140 toxicity (primary endpoints), the mobilization capacity of CD34+ hematopoietic progenitors and CD138 MM cells, and pharmacokinetic (PK) and pharmacodynamic (PD) (secondary endpoints). Methods: 16 MM patients in first CR/PR were included in a phase I/IIa study, in which escalating doses of BKT140 (30, 100,300,900 μg/kg) were administered together with a high-dose cyclophosphamide (Cy) (2 g/m2) and G-CSF (5 μg/Kg) for stem cell mobilization. G-CSF was started on day 5 post Cy and BKT140 was injected subcutaneously (SC) once on day 10. Toxicity, PK, and mobilization capacity (assessed by serial measurements of number of WBC and CD34+ and CD138+ cells) were measured pre- and post BKT140 administration. Results: BKT140 was well tolerated at all doses and none of the patients developed grade II-IV toxicity. BKT140 was rapidly absorbed with no observed lag time, with peak plasma concentrations occurring 0.5h after administration. Clearance was rapid, with a median terminal half-life of 0.69h. BKT140 administration resulted in a significant dose-dependent increase in the number of peripheral blood neutrophils, monocytes, lymphocytes, and CD34+ cells compared to the G-CSF/Cy individual patient baseline. The maximum increase in the number of WBC from baseline was observed within 8h following BKT140 injection, 2.5-, and 3.0-, 4.1- and 4.8-fold, for the 4 BKT140 doses, respectively. Furthermore, BKT140 administration resulted in a significant increase in the mean absolute PB CD34+ cells mobilized (6.6, 7.5, 11.2 and 20.6 ×106/kg) for the 4 BKT140 administered doses, respectively. Moreover, the number of aphaeresis was reduced from 2.25 procedures at the first two BKT140 doses to 1.25 and 1 aphaeresis at the highest BKT140 doses, respectively. An increase in the number of CD138+ cells was observed in 6 out of 6 pts that had CD138+ cells in their blood and were treated with lower doses of BKT140 (30 and 100 μg/kg). Interestingly, in pts that were treated with the highest doses of BKT140 (300 and 900 μg/kg) a reduced number of CD138+ cells was observed in 3 out of 7 pts that had CD138+ cells in their blood, whereas in 4 pts, an increase in the number of CD138+ cells was shown. Three pts who did not have CD138+ cells in their blood were not affected by BKT140. The BKT140 mobilized grafts were used for AutoSCT following 200 mg/m2 melphalan conditioning. Pts received an average of 5.3×106 CD34+ cells/kg. All transplanted pts rapidly engrafted (n=15). The median day for neutrophil (>500/mm3) and platelet (>20,000/mm3, >50,000/mm3,) was on day 11 (range, 0–13), day 11 (range, 0–14), and day 14 (range, 0–23), respectively. Conclusions: The current data suggests that BKT140 can safely be added to G-CSF-based harvesting regimens, can increase CD34+ cell mobilization and reduce the number of collection days. Furthermore, due to its ability to release MM cells from the bone marrow and stimulate their cell death, additional studies are warranted to further evaluate the effect of BKT140 as an anti-MM agent. Disclosures: Nagler: Biokine Therapeutics Ltd: Consultancy. Abraham: Biokine Therapeutics Ltd: Employment, Equity Ownership, Patents & Royalties. Wald: Biokine Therapeutics Ltd: Employment. Shaw: Biokine Therapeutics Ltd: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees. Eizenberg: Biokine Therapeutics Ltd: Employment, Equity Ownership, Patents & Royalties. Peled: Biokine Therapeutics Ltd: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties, Research Funding.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1837-1837
Author(s):  
Eyal Lebel ◽  
Katherine Lajkosz ◽  
Esther Masih-Khan ◽  
Donna E. Reece ◽  
Suzanne Trudel ◽  
...  

Abstract Introduction: Autologous stem cell transplantation (ASCT) is standard therapy for selected patients with newly diagnosed multiple myeloma (MM). Studies in MM and lymphoma have suggested that ability to mobilize and collect a higher yield of CD34 + cells predicts for improved survival outcomes, perhaps reflecting better bone marrow reserve (Bolwell 2007, Raschle 2011). We aimed to validate this hypothesis by correlating high CD34 + cell collection ("supermobilizers") and survival outcomes in a large myeloma cohort with long follow-up. Methods: We retrospectively reviewed MM patients (pts) who underwent ASCT at our centre 2000-2010, correlating number of CD34 + cells collected with post-transplant progression-free survival (PFS) and overall survival (OS). Stem cells were mobilized using cyclophosphamide 2.5 g/m 2 IV (day 1), G-CSF 10 ug/kg/day SC (starting on day 4), and leukapheresis (day 11), targeting 4x10 6/kg but accepting a minimum of 2x10 6/kg to support a single transplant. Using a cut-off used in previous studies, pts were categorized as "supermobilizers" if ≥8x10 6/kg CD34+ cells were collected. Results: 621 pts were analyzed. Most pts (422/605; 70%) received high dose dexamethasone (HDD) alone or in combination with vincristine and adriamycin (VAD) for pre-transplant induction therapy (pre-dating the novel agent era) with only 18% (110/605) receiving more contemporary bortezomib-based induction (mostly cyclophosphamide, bortezomib and dexamethasone; CyBORD). The median number of CD34 + cells collected for all pts was 13.9x10 6/kg (range 2.1-61.8). The median CD34 + cells re-infused was 6.2x10 6/kg (range 2.1-25), as some cells were reserved for 2 nd ASCT, but median CD34+ cells collected correlated with CD34 + cells infused (Pearson coefficient 0.81, p&lt;0.001). At a median follow-up of 74 months (m), we were surprised to report an inferior PFS of 24.1m for the supermobilizers collecting ≥8x10 6/kg vs 33.7m for the &lt;8 group (p=0.038, Figure 1a), without differences in OS (p=0.612, Figure 1b). No further discrimination in PFS was observed when using a more extreme supermobilizer cut-off of 15x10 6/kg. To further understand the counterintuitive result of shorter PFS with higher mobilization capacity, we explored the continuous relationship between CD34 + cells and PFS, identifying another optimal cut-off of 4.5x10 6/kg. Pts collecting in the mid-range (4.5-8; n=129) achieved the best PFS of 34.5m, significantly improved over 24.1m in the ≥8 group (n=478) and 11.4m in the small group at the extreme lower collection range (n=14; ≤4.5x10 6/kg)(Figure 1c). A similar pattern was seen with OS (Figure 1d). Clinical and laboratory parameters that may impact both collection capacity and survival, such as age, ISS, and kidney dysfunction, were investigated as confounders but were similar between collection groups and did not predict for PFS in multivariable analyses. Treatment variables, however, differed between groups: the lower collection groups more often received bortezomib-based induction (29%, 31% and 14% in the ≤4.5, 4.5-8 and ≥8 groups, respectively, p&lt;0.001) resulting in deeper responses pre-transplant (VGPR 50% in the ≥8 group vs 43% in the 4.5-8 group, p=0.024) (Table 1). Use of maintenance therapy post-ASCT also differed (50%, 40% and 28% in the ≤4.5, 4.5-8 and ≥8 groups, respectively, p=0.006). Discussion: In this large cohort of 621 MM patients, we report that "supermobilizers" who collected ≥8 x 10 6 CD34 + cells/kg exhibit inferior PFS from transplant than those with less robust mobilization. We suspected that this unexpected observation was due to confounding variables, and identified differences in treatment, primarily greater use of bortezomib-based induction and post-transplant maintenance therapy in the lower collection group. This group was able to achieve deeper responses (≥VGPR) even before transplant than the supermobilizer group, leading to improved PFS. Although bortezomib is routinely used as induction therapy pre-transplant currently and is not felt to be stem cell toxic, it may impair mobilization to a lesser degree, leading not to abject failure of collection but lowered capacity to achieve "supermobilizer" status. Although more research is needed to validate this hypothesis, we can at minimum conclude that high stem cell collection does not appear to predict for a long-term survival advantage. Figure 1 Figure 1. Disclosures Reece: Millennium: Research Funding; Sanofi: Honoraria; Celgene: Consultancy, Honoraria, Research Funding; Janssen: Consultancy, Honoraria, Research Funding; Amgen: Consultancy, Honoraria; Takeda: Consultancy, Honoraria, Research Funding; Karyopharm: Consultancy, Research Funding; GSK: Honoraria; BMS: Honoraria, Research Funding. Trudel: Amgen: Honoraria, Research Funding; BMS/Celgene: Consultancy, Honoraria, Research Funding; Janssen: Honoraria, Research Funding; Genentech: Research Funding; Sanofi: Honoraria; Pfizer: Honoraria, Research Funding; GlaxoSmithKline: Consultancy, Honoraria, Research Funding; Roche: Consultancy. Prica: Astra-Zeneca: Honoraria; Kite Gilead: Honoraria. Chen: Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees; BMS: Consultancy, Membership on an entity's Board of Directors or advisory committees; Astrazeneca: Membership on an entity's Board of Directors or advisory committees; Beigene: Membership on an entity's Board of Directors or advisory committees; Gilead: Consultancy, Membership on an entity's Board of Directors or advisory committees; Janssen: Consultancy.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2028-2028
Author(s):  
Madeline Skousen ◽  
Sarah A. Holstein ◽  
Matthew A. Lunning ◽  
Elizabeth R. Lyden ◽  
Gilmore Sheree ◽  
...  

Autologous hematopoietic stem cell transplantation (AHSCT) after melphalan (Mel) conditioning has been shown to improve outcomes in patients (pts) with multiple myeloma (MM), including complete response (CR), progression free (PFS) and overall survival (OS). Successful stem cell rescue with adequate number of CD34+ stem cells is thought to be important in achieving these goals post-AHSCT, including reduced platelet (plt) transfusion need, neutrophil engraftment time and previously noted effect on lower cumulative incidence of relapse (CIR). However, there has been some discordance regarding the optimal CD34+ transplantation dose and the effects on outcomes. A retrospective analysis of 508 consecutive MM patients (pts) who underwent AHSCT between 1994-2017 at a single institution was performed to determine the relationship between OS and PFS/CIR at two different CD34+ stem cell infusion dose cutoffs (< 2.5 vs ≥ 2.5 x 106 (mill) CD34+ cells/kg, or < 5.0 vs ≥ 5.0 mill CD34+), an age cutoff (< 65 vs ≥ 65) and a Mel conditioning dose cutoff of 140 mg/m2 vs 200 mg/m2. Multivariate analysis considered high risk MM, defined as either having one of the high risk fluorescent in situ hybridization probes [del17p, t(4;14), t(14;16), t(14;20), gain1q, del1p] or having a complex karyotype (standard risk MM did not contain either), international staging system (ISS) stages I, II and III, and immunomodulatory drug (IMiD)-containing induction (yes/no). Fisher's exact test and the Mann-Whitney test were used to look at the association of CD34+ cutoff groups and patient characteristics. OS was defined as the time from infusion to death from any cause, and was determined by the Kaplan-Meier method; comparisons of survival curves was done using the log-rank test. The CIR was determined using cumulative incidence methods that considered death as a competing event. Gray's test was used to compare CIR curves. Linear regression and Cox regression were used for multivariable analysis. P<0.05 was considered statistically significant. Overall, CD34+ dichotomized at 2.5 or 5.0 mill was not associated with PFS (p=0.25, HR 1.19, CI 0.88-1.62; p=0.99, HR 1.00, CI 0.74-1.35) or OS (p=0.50, HR 1.11, CI 0.82-1.51; p=0.27, HR 0.85, CI 0.63-1.41). When analyzing OS by either age (< 65 vs ≥ 65), Mel conditioning (140 mg/m2 vs 200 mg/m2) or CD34+ infusion cutoffs (< 2.5 vs ≥ 2.5, or < 5.0 vs ≥ 5.0 mill), there was no statistically significant difference. On univariate analysis, the CIR was not statistically different for Mel 140 mg/m2 vs 200 mg/m2 patients at 2.5 mill CD34+ cutoff (p=0.62), but was approaching significance at 5.0 mill cutoff (p=0.054). On univariate analysis, the CIR was not statistically different for patients aged < 65 vs ≥ 65 at 2.5 mill CD34+ cutoff (p=0.92), or 5.0 mill cutoff (p=0.11). On univariate analysis, the CIR was statistically different for CD34+ at 5.0 mill cutoff for patients age ≥ 65 (p=0.01, Figure 1A) and for CD34+ at 5.0 mill cutoff for pts who received Mel140 mg/m2 conditioning (p=0.01, Figure 1B). However, after adjusting for the ISS stage and MM risk in both groups, no difference in CIR was noted (respectively p=0.095, HR: 2.00; 95% CI 0.88, 4.53; p=0.21, HR: 1.77; 95% CI 0.73, 4.29). In a subset analysis for pts ≥ 65 years at the CD34+ 5.0 mill cutoff, mean time in days to neutrophil engraftment on multivariate analysis was shorter for pts who received CD34+ ≥ 5.0 mill compared to < 5.0 mill after adjusting for Mel dose (140 mg/m2 vs 200 mg/m2), ISS stage (I,II vs III), MM risk (standard vs high) and IMiD induction (yes vs no): 11.1 days vs. 12.1 days (p<0.0001). Mean time in days to last platelet infusion on multivariate analysis was also shorter after adjusting for the Mel dose, ISS stage, MM risk and IMiD induction: 7.3 days vs. 10.6 days (p=0.0083). After adjusting for the same variables in multivariate analysis, depth of response at day+100 (CR vs partial response) was not statistically different. Hospitalization duration in days was not significantly affected by either Mel dosing or CD34+ dose. Our single institution experience suggests that there is no significant association between CD34+ stem cell infusion dose at either 2.5 mill or 5.0 mill cutoffs and post-AHSCT outcomes with either Mel dose once controlled for relevant disease specific factors. However, our results do suggest that in pts ≥ 65 years of age, infusing ≥ 5.0 mill CD34+ cells shortens time to neutrophil engraftment and reduces plt transfusion requirements during AHSCT. Disclosures Holstein: Celgene: Consultancy; Takeda: Membership on an entity's Board of Directors or advisory committees; Adaptive Biotechnologies: Membership on an entity's Board of Directors or advisory committees; Sorrento: Consultancy; GSK: Consultancy; Genentech: Membership on an entity's Board of Directors or advisory committees. Lunning:Curis: Research Funding; Janssen Scientific Affairs, LLC: Consultancy, Research Funding; Juno Therapeutics: Consultancy, Research Funding; MiRagen: Research Funding; TG Therapeutics: Consultancy, Research Funding; AbbVie: Consultancy; Bayer: Consultancy; DAVA: Consultancy; Gilead Sciences, Inc.: Consultancy; Kite: Consultancy; Novartis: Consultancy; OncLive: Consultancy; Portola: Consultancy; Seattle Genetics: Consultancy; Spectrum: Consultancy; VANIUM: Consultancy; Verastem: Consultancy. Armitage:Oncology Analytics: Consultancy; Partner Therapeutics: Consultancy; Samus Therapeutics: Consultancy; Ascentage: Consultancy; Union Pacific: Consultancy; Tesaro bio: Membership on an entity's Board of Directors or advisory committees. Al-Kadhimi:Seattle Genetics: Other: Stocks; Celldex Biotech: Other: Stocks. Vose:Celgene Corporation: Research Funding; Incyte Corporation: Research Funding; Kite Pharma: Honoraria, Other: Grants, Research Funding; Novartis: Research Funding; Seattle Genetics: Research Funding; AbbVie: Consultancy, Honoraria; Epizyme: Consultancy, Honoraria; Legend Pharmaceuticals: Honoraria; Acerta Pharma: Honoraria, Other: Grants, Research Funding; Bristol-Meyers Squibb Company: Research Funding. Baljevic:Karyopharm: Other: Internal Review Committee participant; Cardinal Health Specialty Solutions: Consultancy; Takeda Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3373-3373 ◽  
Author(s):  
Patrick Wuchter ◽  
Uta Bertsch ◽  
Hans-Juergen Salwender ◽  
Markus Munder ◽  
Mathias Haenel ◽  
...  

Abstract Introduction: The German-Speaking Myeloma Multicenter Group (GMMG) has initiated a randomized multicenter phase III trial on the effect of elotuzumab in VRD (bortezomib, lenalidomide, dexamethasone) induction/consolidation and lenalidomide maintenance in patients with newly diagnosed multiple myeloma (GMMG-HD6 trial, NCT02495922). The study compares four cycles induction therapy with VRD vs. VRD + elotuzumab, followed by standard intensification (i.e. mobilization and stem cell transplantation), two cycles consolidation with VRD/VRD + elotuzumab and lenalidomide maintenance +/- elotuzumab. The primary endpoint is determination of the best of four treatment strategies regarding progression-free survival. Here we present a first analysis of stem cell mobilization within this study. Patients and Methods: We performed a retrospective analysis of collection data on all patients who underwent peripheral blood stem cell (PBSC) collection between trial initiation in June 2015 and June 2016. Only patients with completely available datasets in respect of mobilization were considered (n=111). The vast majority of 99 patients (89%) received chemomobilization with CAD (cyclophosphamide, adriamycin, dexamethasone) followed by 5-10 µg G-CSF /kg body weight (bw) /d (starting day +9 until completion of PBSC collection), while in one case (1%) dexamethasone was omitted and in 10 cases (9%) cyclophosphamide mono was administered. One patient underwent steady-state mobilization with G-CSF only (10µg /kg bw /d). 55/111 patients received VRD (50%), whereas the remaining patients received VRD + elotuzumab. According to the recommendations of the study group, PBSCs for three stem cell transplants were to be collected. One transplant ideally consisted of ≥2.5 x10^6 CD34+ cells /kg bw, but in the event of poor mobilization as low as ≥2.0 x10^6 CD34+ cells /kg bw would be considered acceptable. Results: The median number of collected CD34+ cells was 10.4 x10^6 /kg bw (range 2.88 to 23.01 x10^6 /kg bw). Overall, 92 patients (83%) collected ≥7.5 x10^6 CD34+ cells /kg bw and another 12 patients (11%) collected between 6.0 and 7.5 x10^6 CD34+ cells /kg bw, resulting in three transplants, respectively. Only 7 patients (6%) collected below 6.0 x10^6 CD34+ cells /kg bw; 5 of them had been treated in the VRD-arm without elotuzumab. Due to insufficient PBSC mobilization after conventional treatment, 14 patients (13%) received a rescue mobilization with plerixafor, from which 12 patients collected ≥6.0 x10^6 CD34+ cells /kg bw. Overall, 7 serious adverse events (SAEs) occurred during mobilization phase, 4 of them in the study arm with elotuzumab. Conclusions: Cyclophosphamide-based chemomobilization after induction therapy with VRD is feasible. Efficient PBSC collection of ≥6.0 x10^6 CD34+ cells /kg bw could be performed in 104 of 111 patients (94%), with a low incidence of SAEs. The need for rescue mobilization was not higher than that of comparable previous GMMG treatment protocols. The addition of elotuzumab during induction phase did not impede PBSC collection. Disclosures Wuchter: Sanofi-Aventis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Hexal: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees. Bertsch:Janssen: Research Funding; Celgene: Research Funding; Chugai: Research Funding. Munder:Janssen: Honoraria; Takeda: Honoraria; Amgen: Honoraria; Bristol Myers Squibb: Honoraria. Fenk:Jansen: Honoraria, Other: travel support; Celgene: Honoraria, Other: travel support, Research Funding. Hillengass:Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees; Amgen: Consultancy, Honoraria; Celgene: Honoraria; BMS: Honoraria; Novartis: Research Funding; Sanofi: Research Funding. Raab:Novartis: Consultancy, Research Funding; BMS: Consultancy; Celgene: Membership on an entity's Board of Directors or advisory committees; Amgen: Consultancy, Research Funding; Janssen: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Ho:Sanofi-Aventis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees. Scheid:Medac: Other: Travel, accomodations or expenses; Baxalta: Honoraria; Amgen: Consultancy; Novartis: Consultancy, Honoraria, Other: Travel, accomodations or expenses; Janssen: Consultancy, Honoraria; Celgene: Other: Travel, accomodations or expenses; BMS: Consultancy, Honoraria. Weisel:Onyx: Consultancy; Amgen: Consultancy, Honoraria; Takeda: Consultancy, Honoraria; Novartis: Honoraria; Janssen: Consultancy, Honoraria, Research Funding; Celgene: Consultancy, Honoraria, Research Funding; BMS: Consultancy, Honoraria. Goldschmidt:Takeda: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees, Research Funding; Chugai: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Bristol-Myers Squibb: Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen: Membership on an entity's Board of Directors or advisory committees, Research Funding; Millennium: Membership on an entity's Board of Directors or advisory committees, Research Funding; Onyx: Honoraria, Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Amgen: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 10-10
Author(s):  
Rajni Agarwal ◽  
Kenneth I. Weinberg ◽  
Hye-Sook Kwon ◽  
Anne Le ◽  
Janel R Long-Boyle ◽  
...  

Successful hematopoietic stem cell transplantation (HSCT) requires vacating recipient hematopoietic stem cell (HSC) niches in the bone marrow to permit donor HSC engraftment that can provide life-long hematopoietic and immune function. Currently, HSCT in SCID relies on DNA damaging chemotherapy to eliminate recipient HSC and achieve niche clearance. We have pursued a non-toxic approach to target and deplete HSC using a humanized monoclonal antibody, JSP191, that binds human CD117 (c-Kit). We previously showed the safety and successful HSC engraftment in a Phase 1 trial of the first 6 patients with severe combined immunodeficiency (SCID), who underwent a second transplant because of HSC engraftment failure and poor immunity after their first transplantation. In these re-transplant patients even a low level of stringently measured myeloid chimerism resulted in significant and sustained generation of naive T cells and clinical improvement. Based on these results, the study of JSP191 (NCT#02963064)has opened a cohort of newly diagnosed infants with SCID. Here we report data from the first patient in this cohort, a SCIDX1 patient who received a primary HSCT with haploidentical CD34+ cells after conditioning with JSP 191. The patient had a c.270-15A&gt;G variant in the IL2RG gene, which is predicted to cause a null phenotype. Besides a T- B+ NK- phenotype typical of SCIDX1 including dysfunctional B cells, the patient had anemia and intermittent neutropenia and thrombocytopenia. Despite evidence of maternal T cell engraftment, the patient had no clinical graft-versus-host disease (GVHD). The patient was initially enrolled in a trial of lentiviral gene therapy, but harvested bone marrow cells died in vitro during transduction and culture. The patient also mobilized poorly with G-CSF/Plerixafor. Further investigation revealed heterozygosity for loss-of-function mutations in two genes involved in DNA repair, BRCA1 and RAD51; Diepoxybutane (DEB) breakage study showed greater than normal pathologic chromosomal breaks, but less than that seen in Fanconi anemia. Because of concern for possible hypersensitivity to alkylating agent-based conditioning, the patient was referred for transplant with JSP191 conditioning. The patient received a CD34+ peripheral blood HSCT from his father after conditioning with 0.3 mg/kg of JSP 191 antibody intravenously over an hour on Day -8 and rATG (Thymoglobulin) on Day -5, -4, -3 and -2 (3.5 mg/kg total) to prevent rejection by the maternal T cells. The cryopreserved donor CD34+ cells were administered after sufficient clearance of the JSP191 serum level. The antibody infusion was well tolerated without toxicity, and the post-transplant course was uneventful without acute toxicities or GVHD. As a surrogate marker for HSC engraftment, CD15+ myeloid cells from peripheral blood were stringently sorted by flow cytometry and donor levels were quantified by short-tandem repeat (STR) analysis. Progressive levels of myeloid engraftment were observed beginning at Week 4. The level of donor chimerism at 12 weeks was 8% in the sorted CD15+ blood cells, and a marrow aspirate showed 25% donor CD34+ cells. By 3 months pre-existing abnormal CD19-CD20+ host B lymphocytes were significantly reduced, and CD19+ donor-derived B lymphocytes were emerging. At 2 months, CD4+ recent thymic emigrant and naïve T lymphocytes were observed, and by 3 months, overall T and NK lymphocyte numbers were 390/uL and 117/uL, respectively. Normal blastogenic responses to the T cell mitogen PHA were observed at 3 months. These first-in-class results provide proof of concept of the safety and efficacy of the use of JSP191 antibody to clear host marrow niche space to enable sufficient donor HSC engraftment and immune reconstitution as primary therapy of SCID. Non-genotoxic conditioning with JSP191 may replace conventional conditioning for newly diagnosed infants with SCID, thereby avoiding toxicities of chemotherapy. Disclosures Kohn: Allogene Therapeutics: Consultancy, Membership on an entity's Board of Directors or advisory committees; Orchard Therapeutics: Consultancy, Patents & Royalties, Research Funding. De Oliveira:Orchard Therapeutics: Research Funding; bluebird bio, Inc.: Research Funding. Czechowicz:Rocket Pharmaceuticals, Inc.: Research Funding. Brown:Merck: Membership on an entity's Board of Directors or advisory committees; Ansun: Membership on an entity's Board of Directors or advisory committees; Cidara: Membership on an entity's Board of Directors or advisory committees; Allogene: Membership on an entity's Board of Directors or advisory committees; Cellerant Therapeutics: Membership on an entity's Board of Directors or advisory committees. Shizuru:Jasper Therapeutics, Inc: Current equity holder in private company, Membership on an entity's Board of Directors or advisory committees.


Sign in / Sign up

Export Citation Format

Share Document