Preclinical Development of a Cryopreservable Megakaryocyte Cell Product from Cord Blood Derived Hematopoietic Stem Cells

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3859-3859
Author(s):  
Helen Fong ◽  
Goar Mosoyan ◽  
Ami Patel ◽  
Ronald Hoffman ◽  
Jay Tong ◽  
...  

Abstract Platelet (PTL) transfusions are currently the most effective treatment for patients with thrombocytopenia. Demand for PTL transfusions has steadily increased in recent years, straining a PTL supply that is already limited due to dependency on volunteer donors, short shelf life, risk of infections, and alloimmunization. This dilemma has stimulated the search for alternative approaches for generating PTLs ex vivo from different sources of hematopoietic stem cells (HSCs). Although PTLs have been successfully generated in cultures initiated with primary human CD34+ cells and pluripotent stem cells, the generation of a clinically relevant PTL product ex vivo faces significant obstacles due to scalability, reproducibility and shelf life. We propose an alternative approach to overcome such obstacles by developing a cryopreservable cell product consisting of megakaryocytes (MK) that can produce PTL in vivo after transfusion into patients. Umbilical cord blood units (CBU) are FDA-approved, readily available sources for allogeneic HSC for transplantation in patients with various blood disorders. Our method utilizes a previously developed two-step culture system of megakaryopoiesis from CB CD34+ cells to generate an MK culture composed of defined MK populations: CD34+/CD41+/CD42b- MK precursors (MKP), immature CD34-/CD41+/CD42b- MK (iMK) and mature CD34-/CD41+/CD42b+ MK (mMK). While robust, the yield of MKs obtained in these cultures is restricted due to limited numbers of HSCs in CB. Our group has recently demonstrated that the numbers of CB CD34+ can be significantly expanded by epigenetic reprogramming following treatment with valproic acid (VPA). Here, we report the integration and optimization of HSC expansion with MK differentiation in order to generate a clinically relevant MK cell product. We tested 20 different culture conditions in which CD34+ cells were cultured for 5 to 8 days in the absence or presence of VPA in serum-free media with various cytokines to allow for HSC expansion. The resulting HSC pool is cultured for additional 4 to 7 days in MK differentiation/maturation media. The overall yield of CD41+ MKs obtained ranged from 8 to 33 MK per input CD34+ cell expanded in the presence of cytokines alone (n=10; mean 19.8 MK) and from 9 to 34 MK per input CD34+ cell expanded in the presence of cytokines plus VPA (n=10; mean 20.7 MK). Given that up to 2x106 CD34+ cells can be isolated from one CBU, it is anticipated that a culture yielding 28 or more MK per one CD34+ cell would generate over 56x106 MK or the equivalent of 7x105 CD41+ MK/kg/body weight for infusion into an 80 kg recipient. The culture conditions resulting in a yield of 28 or more MK per one CD34+ cell input are currently optimized to further maximize the fraction of MK generated which currently varies between 15-57% of culture. The predominant sub-population of MK resulted in these conditions consists of mMKs, regardless of VPA treatment. However, in the presence of VPA, the cultures contain a greater number of assayable CFU-MKs as compared to cytokines alone. Furthermore, preliminary studies suggest that transplantation of ex vivo generated MK leads to detectable human CD41+ cells into the BM and human PTL into the PB of NSG recipient mice. These results indicate that a MK cell product derived from CB HSCs expanded by VPA comprises not only mMK and iMK capable of immediate PTL release but also MKP and HPCs which are capable of sustained MK and PTL production. Another major advantage of a transfusion product composed of nucleated MKs is the possibility of storage by cryopreservation. Due to the fragility of mMK, we tested the cryopreservation of heterogeneous and purified MK cultures. Viability of cryopreserved MK cultures post-thaw was between 68.4-70% and no changes in the MK phenotype. Studies are ongoing to test the ex vivo and in vivo functionality of the cryopreserved MKs. In summary, starting with expanded CB HSC we created a cryopreservable cell product composed of different MK sub-populations within the MK hierarchy which is being developed into a clinically relevant therapy for treatment of thrombocytopenia. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4131-4131
Author(s):  
Joachim Oswald ◽  
Christine Steudel ◽  
Katrin Salchert ◽  
Christian Thiede ◽  
Gerhard Ehninger ◽  
...  

Abstract Expansion of hematopoietic stem cells from neonatal cord blood is an important issue for clinical uses since the number of CD34+ cells in individual cord blood samples is limited and often not sufficient for a successful engraftment in adult individuals. In vivo, hematopoietic stem cells reside in the bone marrow in close vicinity to stromal cells and extracellular matrix molecules. We have established a culture system for the ex vivo expansion of CD34+ cord blood cells utilizing fibrillar collagen 1 as a bioartificial matrix to enable cellular adhesion during cell culture. CD34+ hematopoietic stem cells were isolated via immunomagnetic separation from umbilical cord blood after informed consent and cultivated in presence of recombinant cytokines and reconstituted collagen 1 fibrils as matrix. After seven days of cultivation, expansion of cells, expression of surface molecules cells and expansion of colony forming units were assessed. Additionally gene expression profiling was performed with Affymetrix HG U133A chips interrogating 22,253 probe sets. As control, CD34+ cells were expanded in liquid culture without fibrillar collagen. The overall expansion of CD34+ cells was 4.2 fold + 1.7 compared to 11.1 fold + 2.9 for the control sample. The number of colony forming units (CFU) was increased in the collagen 1 containing samples was elevated (65.1 + 10.3 compared to 26.1 + 7.6 in the control). Gene expression analysis with chip technology showed up regulation of several cytokines (e.g. interleukin 8, interleukin 1a) and also of transcription factors with antiproliferative features like BTG2. The chip data have been verified with quantitative PCR using the Taqman technology. Our data support the idea that direct contact of CD34+ cells with fibrillar collagen 1 results in a delay in cell cycle progression which prevents a subsequent differentiation into more committed progenitors. Therefore fibrillar collagen 1 may serve as supportive matrix for the ex vivo expansion of cord blood derived CD34+ cells.


Blood ◽  
2000 ◽  
Vol 96 (10) ◽  
pp. 3414-3421 ◽  
Author(s):  
Elen S. Rosler ◽  
John E. Brandt ◽  
John Chute ◽  
Ronald Hoffman

Abstract The marrow repopulating potential (MRP) of different sources of human hematopoietic stem cells (HSCs) was directly compared using an in vivo assay in which severe combined immunodeficient disease (SCID) mice were implanted with human fetal bones. HSCs from 2 human lymphocyte antigen (HLA)-mismatched donors were injected individually or simultaneously into the fetal bones of a 3rd distinct HLA type and donor and recipient myeloid and lymphoid cells were identified after 8 to 10 weeks. The study compared the MRP of umbilical cord blood (CB) and adult bone marrow (ABM) CD34+ cells as well as grafts of each type expanded ex vivo. Equal numbers of CB and ABM CD34+ cells injected individually demonstrated similar abilities to establish multilineage hematopoiesis. However, when CB and ABM cells were transplanted simultaneously, the engraftment of CB cells was markedly superior to ABM. CB and ABM CD34+ cells were expanded ex vivo using either a porcine microvascular endothelial cell (PMVEC)-based coculture system or a stroma-free expansion system. Primary CB CD34+ cells or CD34+ cells expanded in either culture system demonstrated a similar ability to engraft. However, the MRP of expanded grafts simultaneously injected with primary CB cells was uniformly inferior to primary CB cells. CD34+ cell grafts expanded in the stroma-free system, furthermore, outcompeted CD34+ cells expanded using the PMVEC coculture system. The triple HLA-mismatched SCID-hu model represents a novel in vivo stem cell assay system that permits the direct demonstration of the functional consequences of ex vivo HSC expansion and ontogeny-related differences in HSCs.


Biomolecules ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 558
Author(s):  
Laura Rodriguez ◽  
Pascale Duchez ◽  
Nicolas Touya ◽  
Christelle Debeissat ◽  
Amélie V. Guitart ◽  
...  

Alpha tocopherol acetate (αTOA) is an analogue of alpha tocopherol (αTOC) that exists in the form of an injectable drug. In the context of the metabolic hypothesis of stem cells, we studied the impact of αTOA on the metabolic energetic profile and functional properties of hematopoietic stem and progenitor cells. In ex vivo experiments performed on cord blood CD34+ cells, we found that αTOA effectively attenuates oxidative phosphorylation without affecting the glycolysis rate. This effect concerns complex I and complex II of the mitochondrial respiratory chain and is related to the relatively late increase (3 days) in ROS (Reactive Oxygen Species). The most interesting effect was the inhibition of Hypoxia-Inducible Factor (HIF)-2α (Hexpression, which is a determinant of the most pronounced biological effect—the accumulation of CD34+ cells in the G0 phase of the cell cycle. In parallel, better maintenance of the primitive stem cell activity was revealed by the expansion seen in secondary cultures (higher production of colony forming cells (CFC) and Severe Combined Immunodeficiency-mice (scid)-repopulating cells (SRC)). While the presence of αTOA enhanced the maintenance of Hematopoietic Stem Cells (HSC) and contained their proliferation ex vivo, whether it could play the same role in vivo remained unknown. Creating αTOC deficiency via a vitamin E-free diet in mice, we found an accelerated proliferation of CFC and an expanded compartment of LSK (lineagenegative Sca-1+cKit+) and SLAM (cells expressing Signaling Lymphocytic Activation Molecule family receptors) bone marrow cell populations whose in vivo repopulating capacity was decreased. These in vivo data are in favor of our hypothesis that αTOC may have a physiological role in the maintenance of stem cells. Taking into account that αTOC also exhibits an effect on proliferative capacity, it may also be relevant for the ex vivo manipulation of hematopoietic stem cells. For this purpose, low non-toxic doses of αTOA should be used.


Blood ◽  
2000 ◽  
Vol 96 (10) ◽  
pp. 3414-3421 ◽  
Author(s):  
Elen S. Rosler ◽  
John E. Brandt ◽  
John Chute ◽  
Ronald Hoffman

The marrow repopulating potential (MRP) of different sources of human hematopoietic stem cells (HSCs) was directly compared using an in vivo assay in which severe combined immunodeficient disease (SCID) mice were implanted with human fetal bones. HSCs from 2 human lymphocyte antigen (HLA)-mismatched donors were injected individually or simultaneously into the fetal bones of a 3rd distinct HLA type and donor and recipient myeloid and lymphoid cells were identified after 8 to 10 weeks. The study compared the MRP of umbilical cord blood (CB) and adult bone marrow (ABM) CD34+ cells as well as grafts of each type expanded ex vivo. Equal numbers of CB and ABM CD34+ cells injected individually demonstrated similar abilities to establish multilineage hematopoiesis. However, when CB and ABM cells were transplanted simultaneously, the engraftment of CB cells was markedly superior to ABM. CB and ABM CD34+ cells were expanded ex vivo using either a porcine microvascular endothelial cell (PMVEC)-based coculture system or a stroma-free expansion system. Primary CB CD34+ cells or CD34+ cells expanded in either culture system demonstrated a similar ability to engraft. However, the MRP of expanded grafts simultaneously injected with primary CB cells was uniformly inferior to primary CB cells. CD34+ cell grafts expanded in the stroma-free system, furthermore, outcompeted CD34+ cells expanded using the PMVEC coculture system. The triple HLA-mismatched SCID-hu model represents a novel in vivo stem cell assay system that permits the direct demonstration of the functional consequences of ex vivo HSC expansion and ontogeny-related differences in HSCs.


2017 ◽  
Vol 14 (3) ◽  
pp. 923-931
Author(s):  
Nooshin Barikrow ◽  
Naser Amirizadeh ◽  
Nasim Hayati Roodbari ◽  
Mahin Nikougoftar

ABSTRACT: Because of insufficient number of umbilical cord blood hematopoietic stem cells (UCB-HSCs), expansion of these cells seems to be important for clinical application in adults. The aim of this study was to co-culture of UCB-HSCs with the amniotic membrane derived mesenchymal stem cells (AMMSCs) as a feeder layer in order to expand hematopoietic stem cells (HSCs). UCBs and amniotic membrane were collected from concern mothers. Ex vivo culture of UCB-HSCs were performed in four culture conditions: cytokine cocktail with MSCs feeder layer, cytokine cocktail, stem cell factor, and co-culture with MSCs without any cytokine. The number of total nucleated cells (TNC) was counted by hemocytometer. The HSC count and immunophenotyping of Mesenchymal stem cells (MSCs) and expanded HSC were evaluated by flow cytometry. Colony forming unit (CFU) assay was used to evaluate the potential of expanded HSCs for production of different lineage colonies. The mean fold changes of total nucleated cells (TNC) and CD34+ cells in the cytokine culture with feeder layer were higher than the cytokine culture without MSCs. However, in the co-culture system without cytokine, TNC and CD34+ cell numbers were increased up to 8 folds, but cell viability was more than 80% and differentiation rate was low. Our results demonstrated that we could increase the number of CD34+ cells of UCB that were used as primary HSC for transplantation.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1190-1190
Author(s):  
Trista E. North ◽  
Wolfram Goessling ◽  
Myriam Armant ◽  
Grace S. Kao ◽  
Leslie E. Silberstein ◽  
...  

Abstract Hematopoietic stem cells (HSCs) are commonly used in transplantation therapy to rescue the hematopoietic and immune systems following systemic chemotherapy or irradiation. However, some patients receive inadequate numbers of HSCs and this often results in delayed reconstitution of hematopoiesis and immune function and associated toxicities. We previously demonstrated that a stabilized derivative of prostaglandin (PG) E2 increases vertebrate HSCs both in vivo and in vitro. 16,16-dimethyl PGE2 (dmPGE2) significantly increased HSCs during zebrafish embryogenesis and in the adult marrow following injury. Incubation of murine embryonic stem cells with dmPGE2 during embryoid body differentiation resulted in a dose-dependent increase in hematopoietic colonies, demonstrating that the function of PGE2 in HSC regulation is conserved in mammals. Finally, ex vivo treatment of murine bone marrow with dmPGE2 resulted in a 2-fold increase in engrafting cells in a limiting dilution competitive repopulation assay. No negative effects on serial transplantability of HSCs were observed in these animal models. To investigate the therapeutic potential of PGE2 for the amplification of blood stem cells, we exposed human cord blood (hCB) cells to dmPGE2 in vitro and measured the effects on stem and progenitor populations both in vitro and in vivo. Red cell depleted umbilical cord blood specimens, cryopreserved for clinical use, were thawed and divided for parallel processing. Ex vivo treatment of hCB cells for 1 hour with dmPGE2 in dextran/albumin had no negative impact on absolute cell count or the viability and relative distribution of both CD45 and CD34 positive cells compared to vehicle treated control hCB cells. Significantly, hCB treated with dmPGE2 produced enhanced numbers of GM and GEMM colonies in methylcellose CFU-C assays compared to controls. Human CB cells treated ex vivo with dmPGE2 for 1 hour and transplanted at a dose of 20 million live CD45+ cells per recipient were capable of repopulating NOD/SCID mice after sublethal irradiation. In comparative studies at 6 weeks post transplantation, human CD34+ and CD45+ cells could be detected in the marrow (>2%) of dmPGE2 treated (4/8) and control treated (1/6) recipients. Long-term and competitive transplantation experiments to assess the effect of dmPGE2 treatment on functional HSCs are currently in progress. Our data suggests that treatment of human cord blood products with dmPGE2 will be both safe and effective in achieving expansion of hematopoietic stem cells for transplantation in the clinical setting. TE North and W Goessling contributed equally to this work.


Author(s):  
Fatima Aerts-Kaya

: In contrast to their almost unlimited potential for expansion in vivo and despite years of dedicated research and optimization of expansion protocols, the expansion of Hematopoietic Stem Cells (HSCs) in vitro remains remarkably limited. Increased understanding of the mechanisms that are involved in maintenance, expansion and differentiation of HSCs will enable the development of better protocols for expansion of HSCs. This will allow procurement of HSCs with long-term engraftment potential and a better understanding of the effects of the external influences in and on the hematopoietic niche that may affect HSC function. During collection and culture of HSCs, the cells are exposed to suboptimal conditions that may induce different levels of stress and ultimately affect their self-renewal, differentiation and long-term engraftment potential. Some of these stress factors include normoxia, oxidative stress, extra-physiologic oxygen shock/stress (EPHOSS), endoplasmic reticulum (ER) stress, replicative stress, and stress related to DNA damage. Coping with these stress factors may help reduce the negative effects of cell culture on HSC potential, provide a better understanding of the true impact of certain treatments in the absence of confounding stress factors. This may facilitate the development of better ex vivo expansion protocols of HSCs with long-term engraftment potential without induction of stem cell exhaustion by cellular senescence or loss of cell viability. This review summarizes some of available strategies that may be used to protect HSCs from culture-induced stress conditions.


Author(s):  
Valentina Orticelli ◽  
Andrea Papait ◽  
Elsa Vertua ◽  
Patrizia Bonassi Signoroni ◽  
Pietro Romele ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document