scholarly journals T Cells Bearing Anti-CD19- and/or Anti-CD38-Chimeric Antigen Receptors Effectively Abrogate Primary Double-Hit Lymphoma Cells

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4182-4182
Author(s):  
Keichiro Mihara ◽  
Tetsumi Yoshida ◽  
Yoshifumi Takei ◽  
Naomi Sasaki ◽  
Yoshihiro Takihara ◽  
...  

Abstract Patients with B-cell lymphomas bearing MYC translocation combined with an additional translocation involving other genes, such as BCL2, BCL3, or BCL6, whose category is defined as double-hit lymphoma (DHL), have dismal prognosis, because these cells are refractory to conventional immunochemotherapy. Recent studies have expanded the concept of a such disease entity to include double-expressing lymphomas (DEL) that co-overexpress MYC protein with those proteins, which have also poor prognosis. An adoptive T-cell immunotherapy with a chimeric antigen receptor (CAR) is clinically shown to have a powerful cytotoxicity in refractory neoplasias. Especially, several results showed that T cells transduced with an anti-CD19-CAR have successfully worked well in patients with refractory acute B-cell lymphoblastic leukemia and B-cell lymphoma as well as chronic B-cell lymphocytic leukemia. Thus, CAR T-cell therapy is a clinically promising tool for various refractory hematopoietic disorders. Accordingly, we examined whether anti-CD19- and/or anti-CD38-CAR-T cells, both of which we previously developed, could abrogate DHL cells. Here, we revealed that the remarkable cytotoxicity of anti-CD19- and/or anti-CD38-CAR T cells against DHL cells from patients. Firstly, DHL cell line cells (KPU-H1, a generous gift form Dr. Junya Kuroda, Kyoto Prefectural University of Medicine) were co-cultured with anti-CD19- and/or anti-CD38-CAR T cells at an effector (E) target (T) ratio of 1: 2 for three days. Cells harvested and stained with anti-CD19 and/or anti-CD38 antibody-APC or -PE were subjected to flow cytometry. Flow cytometric analysis showed that anti-CD19- or anti-CD38-CAR T cells almost killed KPU-H1 cells, respectively (specific cytotoxicity was >90%). Intriguingly, T cells expressing anti-CD19-CAR exerted a collaborative cytotoxicity against KPU-H1 cells with anti-CD38-CAR T cells in vitro. CD38-specific T cells were co-cultured with cytogenetic DHL (n=3) or DEL (n=2) cells from five patients carrying a poor prognosis for 3 days. We examined whether T cells retrovirally transduced with anti-CD19- and/or anti-CD38-CAR vector could show cytotoxicity against primary DHL cells obtained from patients. Anti-CD19 and/or ant-CD38-CAR T cells were co-cultured with primary DHL cells at an E: T ratio of 1: 2 for 3 days. Interestingly, anti-CD19 and anti-CD38-CAR T cells completely abolished these DHL cells from patients, respectively. Additionally, anti-CD19- and anti-38-CAR T cells were synergistically effective to eliminate DHL cells. These results showed that DHL cells, which are refractory or resistant to existing chemotherapeutic agents, can be efficiently abrogated by a clinical use of T cells with anti-CD19- and/or anti-CD38-CAR. These results might warrant adoptive immunotherapy with autologous T cells transduced with anti-CD19 and anti-CD38-CAR for patients with refractory DHL. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1851-1851 ◽  
Author(s):  
Diogo Gomes da Silva ◽  
Malini Mukherjee ◽  
Madhuwanti Srinivasan ◽  
Olga Dakhova ◽  
Hao Liu ◽  
...  

Abstract Although adoptive transfer of T cells with second-generation CD19-specific CARs containing CD28 or 4-1BB costimulatory endodomains shows remarkable clinical efficacy against B cell malignancies, the optimal choice of costimulatory domains in these and other CARs remains controversial. Depending on the precise CAR structure and specificity, individual endodomains may be associated with deleterious ligand-independent tonic signaling in the transduced T cell. Long et al. (Nat Med 2015) established the CD28 co-stimulatory endodomain can have a toxic tonic signaling effect, but it is unclear if tonic 4-1BB signaling may have deleterious consequences as well, and if such effects can be reversed. We therefore modeled tonic CAR signaling in T cells by transducing them with gammaretroviral vectors expressing 2nd-generation CD19.CAR constructs containing either the CD28 or 4-1BB costimulatory endodomain (in addition to the CD3-ζ chain endodomain). Compared to CAR-T cells with the CD28 endodomain alone, those with 4-1BB alone expanded 70% more slowly following transduction. Impaired expansion of 4-1BB CD19.CAR-T cells was coupled with a 4-fold increase in apoptosis and a gradual downregulation of CAR expression, and was a consequence of 4-1BB-associated tonic TRAF2-dependent signaling, leading to activation of NF-κB, upregulation of Fas and augmented Fas-dependent activation-induced T cell death (AICD). Moreover, expression of 4-1BB CAR from a gammaretroviral vector increased tonic signaling through a self-amplifying/positive feedback effect on the retroviral LTR promoter. Because of the toxicity of 4-1BB in our gammaretroviral CAR.CD19 construct (manifest by delayed expansion and increased apoptosis) we could not directly compare the in vivo fate of T cells expressing CAR.CD19 4-1BB with that of co-administered CAR.CD19 CD28 T cells in patients with lymphoma. We found, however, that the adverse effects of tonic 4-1BB costimulation could be overcome in a 3rd-generation CAR.CD19 vector, containing both CD28 and 4-1BB costimulatory molecules in tandem. We thus compared the fate of a 3rd-generation vector containing both CD28 and 4-1BB costimulatory domains with that of a 2nd-generation vector containing CD28 alone. Six patients with refractory/relapsed diffuse large B-cell lymphoma received 2 cell populations, one expressing 2nd and one expressing 3rd generation vectors. To determine whether CD28 alone was optimal (which would suggest 4-1BB is antagonistic) or whether 4-1BB had an additive or synergistic effect contributing to superior persistence and expansion of the CD28-41BB combination, patients were simultaneously infused with 1-20×106 of both 2nd and 3rd generation CAR+ T cells/m2 48-72 hours after lymphodepletion with cyclophosphamide (500 mg/m2/d) and fludarabine (30 mg/m2/d) × 3. Persistence of infused T cells was assessed in blood by CD19.CAR qPCR assays specific for each CAR. Molecular signals peaked approximately 2 weeks post infusion, remaining detectable for up to 6 months. The 3rd-generation CAR-T cells had a mean 23-fold (range 1.1 to 109-fold) higher expansion than 2nd-generation CAR-T cells and correspondingly longer persistence. Two patients had grade 2 cytokine release syndrome, with elevation of proinflammatory cytokines, including IL-6, at the time of peak expansion of T cells. Of the 5 patients evaluable for response, 2 entered complete remission (the longest ongoing for 9 months), 1 has had continued complete remission after autologous stem cell transplantation, 1 had a partial response, and 1 progressed. In conclusion, our data indicate that infusion of T cells carrying a CD19.CAR containing CD28 and 4-1BB endodomains is safe and can have efficacy at every dose level tested. Additionally, in a side-by-side comparison, the 3rdgeneration vector produced greater in vivo expansion and persistence than an otherwise identical CAR-T cell population with CD28 alone. Disclosures Rooney: Cell Medica: Membership on an entity's Board of Directors or advisory committees, Patents & Royalties; Viracyte: Equity Ownership. Heslop:Celgene: Patents & Royalties, Research Funding; Chimerix: Other: Endpoint adjudication committee; Viracyte: Equity Ownership; Cell Medica: Patents & Royalties: Licensing agreement EBV-specific T cells.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2800-2800
Author(s):  
Michael Olson ◽  
Tim Luetkens ◽  
Fiorella Iglesias ◽  
Sabarinath Radhakrishnan ◽  
Jennie Y. Law ◽  
...  

Abstract B cell lymphoma is the most common hematologic malignancy in the United States. Although treatment options have greatly improved in the past several decades, outcomes for patients with relapsed B cell lymphoma remain poor. Chimeric antigen receptor (CAR) T cells have recently entered the clinic with promise to address the gap in effective therapies for patients relapsed B cell lymphoma. However, antigen loss and poor CAR T cell persistence has been shown to drive resistance to the widely approved CD19-targeted CAR in some patients, demonstrating the need for additional therapies. Here, we demonstrate CD229-targeted CAR T cell therapy as a promising option for the treatment of relapsed B cell lymphoma, addressing an important group of patients with typically poor outcomes. CD229 is an immune-modulating receptor expressed on the surface of B cells that we recently found to be highly expressed in the plasma cell neoplasm multiple myeloma (Radhakrishnan et al. 2020). We utilized semi-quantitative PCR and flow cytometry to assess whether CD229 is also expressed on malignant B cells earlier in development as found in B cell lymphoma. Expression analysis revealed the presence of CD229 in a panel of 11 B cell lymphoma cell lines and 45 primary B cell lymphoma samples comprising several subsets of disease including aggressive B cell lymphomas such as diffuse large B cell lymphoma (DLBCL), mantle cell lymphoma (MCL) and Burkitt lymphoma as well as indolent subtypes of B cell lymphoma including chronic lymphoblastic leukemia (CLL) and follicular lymphoma. Of note, CD229 was found to be overexpressed on primary B cell lymphoma cells when compared to autologous normal B cells. Given the high levels of CD229 expression throughout all B cell lymphoma subtypes analyzed, we generated CD229 CAR T cells in order to determine whether CAR T cell therapy is an effective way to target CD229 expressing B cell lymphoma cells. CD229 CAR T cells exhibited robust cytotoxicity when cocultured with B cell lymphoma cell lines and primary samples characterized by significant production of TH1 cytokines IL-2, TNF and IFNγ and rapid loss of B cell lymphoma cell viability when compared to control CAR T cells lacking an antigen binding scFv domain (∆scFv CAR T cells). In vivo analysis revealed effective tumor control in NSG mice carrying B cell lymphoma cell lines JeKo-1 (MCL) and DB (DLBCL) when treated with CD229 CAR T cells versus ∆scFv CAR T cells. Finally, we sought to determine the efficacy of CD229 CAR T cells in the context of CD19 CAR T cell therapy relapse. Here, a 71-year-old patient with CLL had an initial response when treated with CD19 CAR T cells but quickly relapsed only 2 months after treatment. Malignant cells from the CLL patient retained CD229 expression as identified by flow cytometry and an ex vivo coculture with CD229 CAR T cells revealed robust killing of CLL cells by CD229 CAR T cells. Transfer of antigen from target cell to CAR T cell by trogocytosis was recently suggested to drive relapse following CAR T cell therapy by decreasing antigen on tumor cells and promoting CAR T cell fratricide (Hamieh et al. 2019). We cocultured CD19 and CD229 CAR T cells with primary CLL cells and assessed CD19 and CD229 expression as well as CAR T cell viability by flow cytometry. In contrast with CD19 CAR T cells, CD229 CARs did not strip their target antigen from the surface of CLL cells. The transfer of CD19 from CLL cells to CD19 CAR T cells resulted in poor CAR T cell viability while CD229 CAR T cell viability remained high following coculture. In summary, we demonstrate that CD229 is a promising therapeutic target in B cell lymphoma due to its high levels of expression throughout many subtypes of disease. CD229 CAR T cells effectively kill B cell lymphoma cells in vitro and control growth of aggressive B cell lymphomas in vivo. Finally, CD229 CAR T cells are effective against primary CLL cells from patients that have relapsed from CD19 CAR T cell therapy and do no exhibit antigen loss by trogocytosis. Taken together, these data suggest that CD229 CAR T cell therapy may be a promising option to address the poor outcomes for patients with relapsed B cell lymphoma. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 5 (19) ◽  
pp. 3789-3793
Author(s):  
Susanne Jung ◽  
Jochen Greiner ◽  
Stephanie von Harsdorf ◽  
Pavle Popovic ◽  
Roland Moll ◽  
...  

Abstract Treatment with CD19-directed (CAR) T cells has evolved as a standard of care for multiply relapsed or refractory large B-cell lymphoma (r/r LBCL). A common side effect of this treatment is the immune effector cell–associated neurotoxicity syndrome (ICANS). Severe ICANS can occur in up to 30% to 40% of patients treated with axicabtagene-ciloleucel (axi-cel), usually within the first 4 weeks after administration of the dose and usually responding well to steroids. We describe a case of progressive central neurotoxicity occurring 9 months after axi-cel infusion in a patient with r/r LBCL who had undergone a prior allogeneic hematopoietic cell transplant. Despite extensive systemic and intrathecal immunosuppression, neurological deterioration was inexorable and eventually fatal within 5 months. High CAR T-cell DNA copy numbers and elevated levels of interleukin-1 (IL-1) and IL-6 were found in the cerebral spinal fluid as clinical symptoms emerged, and CAR T-cell brain infiltration was observed on autopsy, suggesting that CAR T cells played a major pathogenetic role. This case of unexpected, devastating, late neurotoxicity warrants intensified investigation of neurological off-target effects of CD19-directed CAR T cells and highlights the need for continuous monitoring for late toxicities in this vulnerable patient population.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ulrich Blache ◽  
Ronald Weiss ◽  
Andreas Boldt ◽  
Michael Kapinsky ◽  
André-René Blaudszun ◽  
...  

Adoptive immunotherapy using chimeric antigen receptor (CAR)-T cells has achieved successful remissions in refractory B-cell leukemia and B-cell lymphomas. In order to estimate both success and severe side effects of CAR-T cell therapies, longitudinal monitoring of the patient’s immune system including CAR-T cells is desirable to accompany clinical staging. To conduct research on the fate and immunological impact of infused CAR-T cells, we established standardized 13-colour/15-parameter flow cytometry assays that are suitable to characterize immune cell subpopulations in the peripheral blood during CAR-T cell treatment. The respective staining technology is based on pre-formulated dry antibody panels in a uniform format. Additionally, further antibodies of choice can be added to address specific clinical or research questions. We designed panels for the anti-CD19 CAR-T therapy and, as a proof of concept, we assessed a healthy individual and three B-cell lymphoma patients treated with anti-CD19 CAR-T cells. We analyzed the presence of anti-CD19 CAR-T cells as well as residual CD19+ B cells, the activation status of the T-cell compartment, the expression of co-stimulatory signaling molecules and cytotoxic agents such as perforin and granzyme B. In summary, this work introduces standardized and modular flow cytometry assays for CAR-T cell clinical research, which could also be adapted in the future as quality controls during the CAR-T cell manufacturing process.


2021 ◽  
Vol 11 ◽  
Author(s):  
Limin Xing ◽  
Yihao Wang ◽  
Hui Liu ◽  
Shan Gao ◽  
Qing Shao ◽  
...  

Chimeric antigen receptor T (CAR-T) cells show good efficacy in the treatment of relapsed and refractory B-cell tumors, such as acute B-cell leukemia (ALL) and diffuse large B-cell lymphoma (DLBCL). The main toxicities of CAR-T include cytokine release syndrome, immune effector cell-associated neurotoxicity syndrome, cytopenia, and severe infection. It is still very difficult for CAR-T to kill tumor cells to the maximum extent and avoid damaging normal organs. Here, we report a case of DLBCL with persistent grade 4 thrombocytopenia and severe platelet transfusion dependence treated with CD19 CAR-T cells. We used sirolimus to inhibit the sustained activation of CAR-T cells and restore normal bone marrow hematopoiesis and peripheral blood cells. Moreover, sirolimus treatment did not affect the short-term efficacy of CAR-T cells, and DLBCL was in complete remission at the end of follow-up. In conclusion, sirolimus can represent a new strategy for the management of CAR-T cell therapy-related toxicity, including but not limited to hematotoxicity. However, further controlled clinical studies are required to confirm these findings.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. 3012-3012 ◽  
Author(s):  
Kathryn Cappell ◽  
Richard Mark Sherry ◽  
James C. Yang ◽  
Stephanie L. Goff ◽  
Danielle Vanasse ◽  
...  

3012 Background: T cells expressing anti-CD19 chimeric antigen receptors (CARs) can cause complete remissions of relapsed lymphoma. We conducted the first clinical trial of anti-CD19 CAR T cells to show responses against lymphoma. This CAR was later developed as axicabtagene ciloleucel. Here, we aimed to assess the long-term durability of remissions and the long-term adverse effects after anti-CD19 CAR T-cell therapy. Methods: Between 2009 and 2015, we treated 43 patients with anti-CD19 CAR T cells preceded by conditioning chemotherapy of cyclophosphamide plus fludarabine (NCT00924326). Three patients were re-treated for a total of 46 CAR T-cell treatments. Twenty-eight patients had aggressive lymphoma (diffuse large B-cell lymphoma or primary mediastinal B cell lymphoma), eight patients had low-grade lymphoma (five with follicular lymphoma and 1 each with splenic marginal zone lymphoma, mantle cell lymphoma, and unspecified low-grade non-Hodgkin lymphoma), and seven patients had chronic lymphocytic leukemia (CLL). Patients were treated in three cohorts that differed in the CAR T-cell production process and conditioning chemotherapy dose. Results: Of the 43 treated patients, 63% had chemotherapy-refractory lymphoma. Patients had received a median of 4 previous lines of therapy. The median CAR+ T cell dose per kilogram was 2X10^6. The overall remission rate was 76% with 54% complete remissions (CR) and 22% partial remissions (PR). Patients with CR had higher median peak blood CAR levels (86 CAR+ cells/µL) than those who did not have CR (16 CAR+ cells/µL, P= 0.0041). Long-term adverse effects were rare except for B-cell depletion and hypogammaglobulinemia, which both improved over time. Conclusions: This is the longest follow-up study of patients who received anti-CD19 CAR T cells. Anti-CD19 CAR T cells cause highly durable remissions of relapsed B-cell lymphoma and CLL, and long-term adverse effects of anti-CD19 CAR T cells were rare and usually mild. Clinical trial information: NCT00924326 . [Table: see text]


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 678-678 ◽  
Author(s):  
Pei-Hsuan Chen ◽  
Mikel Lipschitz ◽  
Kyle Wright ◽  
Philippe Armand ◽  
Caron A. Jacobson ◽  
...  

Abstract BACKGROUND: Axicabtagene ciloleucel is an autologous anti-CD19 chimeric antigen receptor (CAR) T-cell therapy that shows efficacy in patients with refractory diffuse large B-cell lymphoma (DLBCL), primary mediastinal B-cell lymphoma and transformed follicular lymphoma after failure of conventional therapy. However, the exact mechanism of anti-tumor immunity is poorly understood, in part due to the dearth of data on the events in the tumor micro-environment (TME) that occur upon exposure to CAR-T cells. We sought to quantify and characterize both CAR-T cells and non-CAR T cells within the TME of DLBCL using tissue biopsy samples collected in the ZUMA-1 multicenter trial of CAR-T cell therapy for patients with refractory DLBCL. METHODS: Tumor samples obtained from patients 5-30 days (median 10 days) after CAR-T infusion ("CAR-treated", n=14) and randomly-selected untreated ("untreated ", n=15) archival DLBCL tissue samples were analyzed by multiplex immunofluorescence using formalin-fixed, paraffin embedded tissue sections, with successive labeling by the primary antibodies KIP-1 and/or KIP-3 (recognizing separate CD19 CAR epitopes), PAX5, PD-1, CD4, and CD8, followed by secondary amplification and tyramide-conjugated fluorophores. For each case, at least 3 representative 20x fields of view were selected and imaged using a multispectral imaging platform. Two specific image analysis algorithms were designed to accurately identify CD4 and CD8 T cells and PAX5+ DLBCL cells simultaneously, then to threshold PD-1 and KIP-1/-3 by relative fluorescent units (RFU) in each phenotype. RESULTS: We identified CAR T-cells within the fixed biopsy samples of CAR-treated DLBCLs by immunostaining with CAR T-cell specific antibody KIP-1; at the timepoints analyzed, CAR T-cells comprised only a small minority of total T- cells (<2%) and included CD4+ and CD8+ T-cells. Immunostaining with a second antibody, KIP-3, validated the presence of CAR T-cells in these cases and confirmed the KIP-1 results. Expression of the T cell activation marker PD-1 was detected among majority of KIP-1+ cells. Further analysis that included KIP1-negative cells revealed that the percentage of CD8+ cells co-expressing PD-1 across all CD8+ cells was higher in the CAR-treated DLBCLs compared to the untreated DLBCLs (mean 50.1% vs 17.5%, p<0.0001 with unpaired t test ), indicating CD8 T cell activation within the tumor environment. In contrast, PD-1 positivity across CD4+ T cells were equivalent between the two groups (mean 21.8% vs 21.6%, ns with unpaired t test). The percentages of total, CD4+, and CD8+ T-cell populations in the TME were similar between the CAR-treated DLBCL and untreated biopsies. CONCLUSIONS: CD4+ and CD8+ CAR-T cells can be detected in CAR-treated DLBCL patient tissue biopsies by multiplex immunofluorescence. At the time points analyzed to date, CAR-T cells comprise only a small percentage of all T-cells (<2%) within the TME. However, the presence of gene marked T cells with downregulated CAR protein expression is also possible. The activation marker PD-1 is preferentially expressed by KIP-1-negative CD8+ T cells compared to CD4+ T cells in CAR-T treated DLBCLs relative to untreated DLBCLs. These data implicate preferential activation of CD8+ non-CAR "by-stander" T-cells in the post CAR-T TME, and the possible benefit of combining PD-1 blockade with CAR-T therapy in DLBCL. *PH.C and M.L share equal contribution. Disclosures Armand: Otsuka: Research Funding; Affimed: Consultancy, Research Funding; Pfizer: Consultancy; Infinity: Consultancy; Adaptive: Research Funding; Merck: Consultancy, Research Funding; Bristol-Myers Squibb: Consultancy, Research Funding; Roche: Research Funding; Tensha: Research Funding. Roberts:KITE: Employment. Rossi:KITE: Employment. Bot:KITE: Employment. Go:KITE: Employment. Rodig:Merck: Research Funding; Bristol Myers Squibb: Research Funding; Affimed: Research Funding; KITE: Research Funding.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 5386-5386
Author(s):  
Haiwen Huang ◽  
Yibin Jiang ◽  
Zhengming Jin ◽  
Caixia Li ◽  
Depei Wu

Abstract Background: Recent advances have improved the treatment of B-cell malignancies, but patients who have disease resistant to primary or salvage treatment or who relapse after transplantation have an extremely poor prognosis. Studies of chimeric antigen receptor T-cell (CAR-T) therapy have shown high response rates and long response duration in refractory B-cell lymphomas after the failure of conventional therapy, which suggest that this therapy may be potentially curative. To explore the possible factors on efficacy and safety of CAR T-Cell therapy in relapsed or refractory aggressive B-cell lymphomas, we conducted the clinical trial of CAR-T Cell Treating Relapsed/Refractory B-cell lymphomas (NCT03196830). Methods: From March 2017 to April 2018, 25 patients were enrolled into our clinical trial. According to the surface expression of tumor cells by either flow cytometry or immunohistochemistry, different targets of CAR T-cells were infused, ionly anti-CD19 (n=11), sequential infusion of anti-CD22 and anti-CD19 (n=8), and sequential infusion of anti-CD20 and anti-CD19 (n=6). Patients received conditioning treatment (low-dose cyclophosphamide, 300 mg/m² per day, and fludarabine, 30 mg/m² per day) on days -5, -4, and -3 before the administration of autologous CAR T-cells. The primary endpoint was the proportion of patients with an objective response. Secondary endpoints included safety and biomarker assessments. Results: Among the 25 patients who were enrolled, response was successfully evaluated for 24. The objective response rate was 75%, and the complete response rate was 33%. With a median follow-up of 3.2 months, 54% of the patients continued to have a response, with 25% continuing to have a complete response. Grade 3 or higher cytokine release syndrome (CRS) and neurologic events occurred in 24% and 16% of the patients, respectively. One of the patients died during treatment. Serum biochemical index analysis confirmed the associations of peak serum interleukin-2, -6, -10, INF-γ, ferritin, C-reactive protein (CRP) concentrations and the level of lactate dehydrogenase (LDH) before therapy with the grade 3 or higher CRS, as well as peak serum interleukin-6, -10, INF-γ, CRP, ferritin and the level of LDH before therapy with grade 3 or higher neurologic events. Conclusion: Our study demonstrates the efficacy and safety of CAR-T therapy relapsed or refractory aggressive B-cell lymphoma. The level of LDH before therapy was higher in patients who developed grade 3 or serious CRS, which suggest that we should improve safety by reducing tumor burden before CAR T-cells infusion. Due to the small number of enrolled cases, no significant improvement of efficacy was observed, this result needs to be further confirmed by expanding the number of study cases. Figure. Figure. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4084-4084 ◽  
Author(s):  
Ran Reshef ◽  
David B. Miklos ◽  
John M. Timmerman ◽  
Caron A. Jacobson ◽  
Nabila N. Bennani ◽  
...  

Background: Relapsed/refractory (R/R) large B cell lymphoma (LBCL) is associated with poor outcomes to standard salvage therapy (Crump M, et al. Blood. 2017). In SCHOLAR-1, a large multicenter, patient-level, retrospective study, patients with R/R diffuse LBCL had a 26% objective response rate (ORR) to the next line of therapy, a 7% complete response (CR) rate, and a median overall survival of 6.3 months (Crump M, et al. Blood 2017). Axicabtagene ciloleucel (axi-cel) is an autologous anti-CD19 chimeric antigen receptor (CAR) T cell therapy approved for patients with R/R LBCL with ≥ 2 prior systemic therapies. With a median follow-up of 27.1 months in ZUMA-1, the ORR with axi-cel was 83% (58% CR rate) in patients with refractory LBCL (Locke FL, et al. Lancet Oncol. 2019). Activation of the costimulatory receptor 4-1BB (CD137) on CAR T cells may enhance axi-cel antitumor activity by enhancing T cell proliferation, function, and survival. Utomilumab (uto), an investigational monoclonal antibody agonist of the 4-1BB pathway, enhanced T cell function and survival in preclinical studies (Fisher TS, et al. Cancer Immunol Immunother. 2012) and had favorable single-agent safety in patients (Segal NH, et al. Clin Cancer Res. 2018). Possible mechanisms of resistance to axi-cel are thought to be suboptimal CAR T cell expansion an exclusionary tumor microenvironment and CD19 target antigen loss (Neelapu SS, et al. Blood 2017, Rossi JM, et al J Immunother Cancer. 2018). Combination strategies that increase proliferation, expansion, and persistence of CAR T cells or prevent activation-induced cell death of CAR T cells may improve clinical outcomes observed with axi-cel. ZUMA-11 is a Phase 1/2 study investigating the efficacy and safety of axi-cel + uto in patients with refractory LBCL. Methods: The primary objectives of this study are to determine the safety, recommended Phase 2 dosing and timing (Phase 1), and efficacy (Phase 2) of axi-cel + uto in adult patients with refractory LBCL. Patients with progressive or stable disease as the best response to second-line chemotherapy or relapse ≤ 12 months after autologous stem cell transplantation, a prior anti-CD20 antibody and anthracycline-containing regimen, and Eastern Cooperative Oncology Group performance status 0-1 are eligible. Patients with histologically proven primary mediastinal B cell lymphoma, history of Richter's transformation or chronic lymphocytic lymphoma, prior CAR T cell therapy, or central nervous system involvement of lymphoma are ineligible. In Phase 1, ≈24 patients in ≤ 3 cohorts will receive a single dose of axi-cel and escalating doses of uto (10, 30, or 100 mg) using a 3 + 3 design in up to 4 of 6 cohorts. The recommended uto dose will be based on dose-limiting toxicities and other factors. Patients will be leukapheresed and may receive optional, nonchemotherapy bridging therapy per investigator decision. After conditioning chemotherapy, patients will receive a single infusion of axi-cel (target dose, 2 × 106 CAR T cells/kg) on Day 0 followed by uto on Day 1 and every 4 weeks for 6 months or until progressive disease. Patients will be treated one at a time during Phase 1, and patients treated with axi-cel will be staggered by ≥ 2 weeks. Day 21 uto administration will be explored if toxicity is unacceptable with Day 1 administration. The primary endpoints are incidence of dose-limiting toxicities in Phase 1 and CR rate in Phase 2. Secondary endpoints include ORR, duration of response, progression-free survival, overall survival, safety, and levels of CAR T cells and cytokines in blood. This study uses a single-arm design to estimate the true CR rate; with a sample size of 27 patients, of which ≤ 3 patients will have been treated in the Phase 1 portion, the maximum half-width of the 95% confidence interval about response will be ≥ 21%. ZUMA-11 is open and accruing patients. Disclosures Reshef: Kite, a Gilead Company: Consultancy, Honoraria, Research Funding; Celgene: Research Funding; Incyte: Consultancy, Research Funding; Shire: Research Funding; BMS: Consultancy; Atara: Consultancy, Research Funding; Magenta: Consultancy; Pfizer: Consultancy; Pharmacyclics: Consultancy, Research Funding. Miklos:Pharmacyclics: Consultancy, Patents & Royalties, Research Funding; Precision Bioscience: Consultancy; Adaptive Biotechnologies: Consultancy, Research Funding; Miltenyi: Consultancy, Research Funding; Becton Dickinson: Consultancy; Janssen: Consultancy; AlloGene: Consultancy; Novartis: Consultancy; Kite, A Gilead Company: Consultancy, Research Funding; Celgene-Juno: Consultancy. Timmerman:Spectrum Pharmaceuticals: Research Funding; Kite, A Gilead Company: Consultancy, Honoraria, Other: travel support, Research Funding; ImmunGene: Research Funding; Merck: Research Funding; Bristol-Myers Squibb: Consultancy, Honoraria, Other: travel support, Research Funding. Jacobson:Novartis: Consultancy, Honoraria, Other: travel support; Bayer: Consultancy, Other: travel support; Precision Biosciences: Consultancy, Other: travel support; Humanigen: Consultancy, Other: travel support; Celgene: Consultancy, Other: travel support; Pfizer: Research Funding; Kite, a Gilead Company: Consultancy, Honoraria, Other: travel support. Bennani:Kite, A Gilead Company: Consultancy, Research Funding. Rossi:Kite, A Gilead Company: Employment. Sherman:Kite, A Gilead Company: Employment. Sun:Kite, A Gilead Company: Employment. Palluconi:Kite, A Gilead Company: Employment. Kim:Kite, A Gilead Company: Employment. Jain:Kite/Gilead: Consultancy.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 697-697 ◽  
Author(s):  
Jennifer Brudno ◽  
Steven Hartman ◽  
Norris Lam ◽  
David F. Stroncek ◽  
John M. Rossi ◽  
...  

Abstract Anti-CD19 chimeric antigen receptor (CAR) T cells have powerful activity against B-cell lymphoma, but improvement is clearly needed. Toxicity, including cytokine-release syndrome (CRS) and neurologic toxicity, occurs after anti-CD19 CAR T cell infusions. Most CAR T-cell toxicity is caused, either directly or indirectly, by cytokines or other proteins that are secreted from CAR T cells. The structure of a CAR is an extracellular antigen-recognition domain connected by hinge and transmembrane (TM) domains to intracellular T-cell signaling moieties. In vitro, T cells expressing CARs with hinge and TM domains from the CD8-alpha molecule released significantly lower levels of cytokines compared with T cells expressing CARs with hinge and TM domains from CD28; however, T cells expressing CARs with hinge and TM domains from CD8-alpha retained sufficient functional capability to eradicate tumors from mice (Alabanza et al. Molecular Therapy. 2017. 25(11) 2452). To reduce cytokine production with a goal of reducing clinical toxicity, we incorporated CD8-alpha hinge and TM domains into an anti-CD19 CAR. The CAR also had a human antigen-recognition domain, a CD28 costimulatory domain, and a CD3-zeta domain. This CAR was designated Hu19-CD828Z and was encoded by a lentiviral vector. Hu19-CD828Z was different from the FMC63-28Z CAR that we used in prior studies. FMC63-28Z had hinge and TM domains from CD28 along with a CD28 costimulatory domain, a CD3-zeta domain, and murine-derived antigen-recognition domains. Twenty patients with B-cell lymphoma were treated on a phase I dose-escalation clinical trial of Hu19-CD828Z T cells (Table). Patients received low-dose cyclophosphamide and fludarabine daily for 3 days on days -5 to -3. Two days later, on day 0, CAR T cells were infused. The overall response rate (ORR) after 1st treatments with Hu19-CD828Z T cells was 70%, and the complete response (CR) rate 55%; the 6-month event-free survival was 55%. The anti-lymphoma activity of Hu19-CD828Z T cells in the current trial was comparable to the anti-lymphoma activity of FMC63-28Z T cells in a similar prior trial that also enrolled patients with advanced B-cell lymphoma. In the prior trial, we observed a 73% ORR, a 55% CR rate, and a 6-month event-free survival of 64% in 22 patients treated with FMC63-28Z T cells (Kochenderfer et al. Journ. Clin. Oncology. 2017 35(16) 1803). In our previous clinical trial of FMC63-28Z T cells, the rate of Grade 3 or 4 neurologic toxicity among 22 patients treated was 55%. Strikingly, in our trial of Hu19-CD828Z T cells, the rate of Grade 3 or 4 neurologic toxicity was only 5% (1/20 patients). In addition, the rate of Grade 2 or greater neurologic toxicity with FMC63-28Z T cells was 77.3% while the rate of Grade 2 or greater neurologic toxicity with Hu19-CD828Z T cells was 15%. To explore the mechanism for the difference in neurologic toxicity in patients receiving FMC63-28Z T cells versus Hu19-CD828Z T cells, we assessed serum levels of 41 proteins in patients treated with these CAR T-cells. This comparison is valid because the same Luminex methodology was used for the serum protein analysis for both trials, and controls of known amounts of each protein were assayed to ensure that protein levels were comparable on the different trials. Lower levels of several serum proteins that might be important in CAR toxicity were found in patients treated with Hu19-CD828Z T cells versus patients treated with FMC63-28Z T cells: Granzyme A (P<0.001), Granzyme B (P<0.001), interferon gamma (P=0.011), interleukin (IL)-15 (P=0.007), IL-2 (P=0.0034), and macrophage inflammatory protein-1A (P<0.001). Median peak patient blood CAR+ cell levels were 44 cells/µL for Hu19-CD828Z and 46.5 cells/µL for FMC63-28Z (P=not significant). We hypothesize that lower levels of potentially neurotoxic proteins in patients receiving Hu19-CD828Z T cells versus FMC63-28Z T cells led to a lower frequency of neurologic toxicity in patients receiving Hu19-CD828Z T cells. The lower levels of immunologically active proteins found in the serum of patients receiving Hu19-CD828Z T cells compared with patients receiving FMC63-28Z T cells is consistent with our in vitro experiments showing lower cytokine production by T cells expressing CARs with CD8 hinge and TM domains versus CD28 hinge and TM domains. Altering CAR hinge and TM domains can affect CAR T-cell function and is a promising approach to improve the efficacy to toxicity ratio of CAR T-cells. Disclosures Rossi: KITE: Employment. Shen:Kite, a Gilead Company: Employment. Xue:Kite, a Gilead Company: Employment. Bot:KITE: Employment. Rosenberg:Kite, a Gilead Company: Research Funding. Kochenderfer:Kite a Gilead Company: Patents & Royalties: CAR technology, Research Funding; Celgene: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document