Blast Crisis in a Dish: Generation of a Blast Crisis Model in Chronic Myeloid Leukemia (CML) Using Patient-Specific Induced Pluripotent Stem Cells ( iPSC)

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 933-933
Author(s):  
Gladys Telliam ◽  
Christophe Desterke ◽  
Olivier Féraud ◽  
Frank Griscelli ◽  
Noufissa Oudrhiri ◽  
...  

Abstract Despite the major progress obtained in prognosis with the use of tyrosine kinase inhibitors (TKI), the great majority of patients with CML remain on long-term therapy and progression occurs in patients with either primary or secondary resistance. The mechanisms of progression towards accelerated phase (AP) and blast crisis (BC) have been studied so far only in primary patient samples in BC. Currently, there is no in vitro model to study sequentially the molecular events leading from CP to BC as only some primary sequential samples are amenable to analysis. Using induced Pluripotent Stem Cell (iPSC) technology, it is now possible to reprogram the primary leukemic cells to pluripotency and generate a major source of stem cells. To determine the feasibility of studying progression of CML towards AP and BC, we have used a patient-specific iPSC line that we have generated from the primary leukemic cells of a patient who later showed a TKI-resistance requiring an allogeneic stem cell transplant. These iPSC expressed BCR-ABL, exhibited all pluripotency markers and after injection in NSG mice, generated teratoma with differentiation into three germ layers. In hematopoietic differentiation assays using day 19-embryoid bodies (EB), increased numbers of hematopoietic progenitors were found as compared to control iPSC (5-fold increase n= 3). We have then treated leukemic iPSC with the mutagenic agent N-ethyl-N-nitrosourea (ENU) during regular medium changes. After 61 days in ENU cultures, day-19 derived embryoid bodies generated hematopoietic cells (>90% CD45+, CD43+) which proliferated in liquid cultures with myeloid and some blast cell morphology. Cytogenetic analyses of iPSC revealed chromosomal abnormalities such as loss of Y and loss of der q9+, both alterations known to occur in CML during progression. They exhibited increased numbers of micronuclei (MN) as compared to leukemic iPSC without ENU (X 3 Fold increase) suggesting acquisition of a progressive chromosomal instability. CGH array analyses were performed using ENU-treated iPSC-derived hematopoietic cells in two different timepoints as compared to leukemic iPSC cultured without ENU. Genomic aberrations were analyzed by Agilent Cytogenomics software with Mosaicism workflow on HG19 genome. 249 gene loci alterations were detected after polymorphism filtration on European population. These analyses showed DNA losses and DNA gains in genes implicated in mesoderm development and hematopoietic lineage as well as genes implicated in DNA damage response. Several loci of transcription factors were found to be involved such as IKZF1 described in imatinib-refractory chronic myeloid leukemia (Bolton-Gillespie et al. 2013). The aberrations included SIRT1and BLM which is implicated in DNA repair. Several cancer genes were found to be involved, some known to be altered in leukemia (BLM, IKZF1, NCOA2, ALK, EP300, ERG, MKL1, PHF6 and TET1). Remarkably, transcriptome geodataset GSE4170 (Radich et al. 2006) allowed us to associate 125 of 249 of the aberrations that we detected in CML iPSC, with the CML progression genes already described during progression from chronic and AP to BC (p-value =9.43E-32, after ANOVA with 1000 permutations). 38 most predictive aberrations allowed perfect reclassification of BC and chronic phase samples by unsupervised classification. Among these candidates, eleven of them have been described in CML physiopathology and connected to TKI resistance and genomic instability. Majority of them ( 7/11) are connected to chronic phase (FAS, ACTB, TRIM21, ANPEP, MLK1, CSF2RA, and MAGEC2) whereas a minority of them (4/11) are connected to BC (ACP1, SH3YL1, FHL1, IL3RA). Interestingly, these experiments also allowed us to discover the connection of a new multidrug resistance molecule associated to BC and having the ability to modify interferon pathway connected to the TKI sensitivity. Thus, genomic instability pattern that we have generated using a single leukemic iPSC allowed duplication of genomic abnormalities described in CML progression and allowed identification of some novel genes. Overall, these results demonstrated that we have generated for the first time to our knowledge, an in vitro BC model, reproducing genomic events described in patients with BC. This "blast crisis in a dish" tool using patient-derived iPSC will be of major interest to study CML progression and eventually to test novel therapies. Figure. Figure. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
1999 ◽  
Vol 94 (4) ◽  
pp. 1201-1208 ◽  
Author(s):  
J.H. Frederik Falkenburg ◽  
Amon R. Wafelman ◽  
Peter Joosten ◽  
Willem M. Smit ◽  
Cornelis A.M. van Bergen ◽  
...  

Relapse of chronic myeloid leukemia (CML) in chronic phase after allogeneic stem cell transplantation (SCT) can be successfully treated by donor lymphocyte infusion (DLI). However, relapse of accelerated phase CML, blast crisis, or acute leukemia after allogeneic SCT are resistant to DLI in the majority of cases. In vitro-selected and expanded leukemia-reactive T-cell lines may be more effective in inducing an antileukemic response in vivo. To treat a patient with accelerated phase CML after allogeneic SCT, leukemia-reactive cytotoxic T-lymphocyte (CTL) lines were generated from her HLA-identical donor. Using a modification of a limiting dilution assay, T cells were isolated from the donor, selected based on their ability to inhibit the in vitro growth of CML progenitor cells, and subsequently expanded in vitro to generate CTL lines. Three CTL lines were generated that lysed the leukemic cells from the patient and inhibited the growth of leukemic progenitor cells. The CTL did not react with lymphocytes from donor or recipient and did not affect donor hematopoietic progenitor cells. The 3 leukemia-reactive CTL lines were infused at 5-week intervals at a cumulative dose of 3.2 × 109 CTL. Shortly after the third infusion, complete eradication of the leukemic cells was observed, as shown by cytogenetic analysis, fluorescence in situ hybridization, molecular analysis of BCR/ABL-mRNA, and chimerism studies. These results show that in vitro cultured leukemia-reactive CTL lines selected on their ability to inhibit the proliferation of leukemic progenitor cells in vitro can be successfully applied to treat accelerated phase CML after allogeneic SCT.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2922-2922
Author(s):  
Richard Tseng ◽  
Chen-Hsiung Yeh ◽  
Iman Jilani ◽  
Zhong Zhang ◽  
Hagop Kantarjian ◽  
...  

Abstract Cellular increase in the heat shock protein 70 (HSP70) inhibits death receptor and mitochondria-initiated signaling for apoptosis. In Vitro and in vivo data from patients with chronic myeloid leukemia (CML) indicates that overexpression of HSP70 in leukemic cells is associated with resistance to imatinib. The HSP70 protein is detectable in the plasma and has been reported to represent a marker for cardiovascular stress as well as prostate cancer. We measured HSP70 in the plasma of 139 patients with CML using a sandwich assay based on meso scale technology and correlated levels of HSP70 protein in plasma with clinical behavior. All samples were collected prior to initiating imatinib therapy. The levels of HSP70 in CML patients in chronic phase (N=93) were not significantly (P=0.08) different from those in patients with CML in accelerated/blast crisis (N=46) (median 33.24 ng/ml, range: 3.892–128.172 ng/ml Vs median 26.57 ng/ml, range: 4.498–114.746 ng/ml, respectively). However, CML patients had significantly (P<0.0001) higher levels of HSP70 than normal control (N=95, median=4.17 ng/ml, range:1.746–24.684 ng/ml). There was significant correlation between plasma levels of HSP70 and platelets (r=0.54), WBC (r=0.32), and basophils (r=0.31) in patients in chronic phase and with platelets (r=0.72), blasts (r=0.39), and basophils (r=0.50) in patients in Acc/Bl phase. Patients in chronic phase and high levels above the median had significantly (P=0.02) higher rate of progression to ACC/Bl phase while on therapy with imatinib (figure). In addition these patients appear to have a tendency toward shorter survival (P=0.07). There was no significant correlation between plasma HSP70 levels and survival in patients with ACC/Bl phase. This data support the reported role of HSP70 in the resistance to imatinib in patients with CML and potentially plasma HSP70 levels may represent a marker for resistance in patients with chronic phase CML. Figure Figure


Blood ◽  
1999 ◽  
Vol 94 (4) ◽  
pp. 1201-1208 ◽  
Author(s):  
J.H. Frederik Falkenburg ◽  
Amon R. Wafelman ◽  
Peter Joosten ◽  
Willem M. Smit ◽  
Cornelis A.M. van Bergen ◽  
...  

Abstract Relapse of chronic myeloid leukemia (CML) in chronic phase after allogeneic stem cell transplantation (SCT) can be successfully treated by donor lymphocyte infusion (DLI). However, relapse of accelerated phase CML, blast crisis, or acute leukemia after allogeneic SCT are resistant to DLI in the majority of cases. In vitro-selected and expanded leukemia-reactive T-cell lines may be more effective in inducing an antileukemic response in vivo. To treat a patient with accelerated phase CML after allogeneic SCT, leukemia-reactive cytotoxic T-lymphocyte (CTL) lines were generated from her HLA-identical donor. Using a modification of a limiting dilution assay, T cells were isolated from the donor, selected based on their ability to inhibit the in vitro growth of CML progenitor cells, and subsequently expanded in vitro to generate CTL lines. Three CTL lines were generated that lysed the leukemic cells from the patient and inhibited the growth of leukemic progenitor cells. The CTL did not react with lymphocytes from donor or recipient and did not affect donor hematopoietic progenitor cells. The 3 leukemia-reactive CTL lines were infused at 5-week intervals at a cumulative dose of 3.2 × 109 CTL. Shortly after the third infusion, complete eradication of the leukemic cells was observed, as shown by cytogenetic analysis, fluorescence in situ hybridization, molecular analysis of BCR/ABL-mRNA, and chimerism studies. These results show that in vitro cultured leukemia-reactive CTL lines selected on their ability to inhibit the proliferation of leukemic progenitor cells in vitro can be successfully applied to treat accelerated phase CML after allogeneic SCT.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Laís Vicari de Figueiredo Pessôa ◽  
Pedro Ratto Lisboa Pires ◽  
Maite del Collado ◽  
Naira Caroline Godoy Pieri ◽  
Kaiana Recchia ◽  
...  

Introduction. Pluripotent stem cells are believed to have greater clinical potential than mesenchymal stem cells due to their ability to differentiate into almost any cell type of an organism, and since 2006, the generation of patient-specific induced pluripotent stem cells (iPSCs) has become possible in multiple species. Objectives. We hypothesize that different cell types respond differently to the reprogramming process; thus, the goals of this study were to isolate and characterize equine adult and fetal cells and induce these cells to pluripotency for future regenerative and translational purposes. Methods. Adult equine fibroblasts (eFibros) and mesenchymal cells derived from the bone marrow (eBMmsc), adipose tissue (eADmsc), and umbilical cord tissue (eUCmsc) were isolated, their multipotency was characterized, and the cells were induced in vitro into pluripotency (eiPSCs). eiPSCs were generated through a lentiviral system using the factors OCT4, SOX2, c-MYC, and KLF4. The morphology and in vitro pluripotency maintenance potential (alkaline phosphatase detection, embryoid body formation, in vitro spontaneous differentiation, and expression of pluripotency markers) of the eiPSCs were characterized. Additionally, a miRNA profile analysis of the mesenchymal and eiPSCs was performed. Results. Multipotent cells were successfully isolated, but the eBMmsc failed to generate eiPSCs. The eADmsc-, eUCmsc-, and eFibros-derived iPSCs were positive for alkaline phosphatase, OCT4 and NANOG, were exclusively dependent on bFGF, and formed embryoid bodies. The miRNA profile revealed a segregated pattern between the eiPSCs and multipotent controls: the levels of miR-302/367 and the miR-92 family were increased in the eiPSCs, while the levels of miR-23, miR-27, and miR-30, as well as the let-7 family were increased in the nonpluripotent cells. Conclusions. We were able to generate bFGF-dependent iPSCs from eADmsc, eUCmsc, and eFibros with human OSKM, and the miRNA profile revealed that clonal lines may respond differently to the reprogramming process.


Blood ◽  
1992 ◽  
Vol 80 (10) ◽  
pp. 2522-2530 ◽  
Author(s):  
C Udomsakdi ◽  
CJ Eaves ◽  
PM Lansdorp ◽  
AC Eaves

Abstract The peripheral blood of chronic myeloid leukemia (CML) patients with chronic-phase disease and elevated white blood cell (WBC) counts typically contains markedly increased numbers of a variety of neoplastic pluripotent and lineage-restricted hematopoietic progenitors. These include cells detected in standard colony assays as well as their more primitive precursors. The latter are referred to as long-term culture-initiating cells (LTC-IC) because of their ability to generate clonogenic cell progeny detectable after a minimum of 5 weeks incubation on competent fibroblast feeder layers. In this study, we have investigated a number of the properties of the LTC-IC and clonogenic cells present in the blood of such CML patients with high WBC counts. This included an analysis of the light scattering properties of these progenitors, as well as their expression of CD34 and HLA-DR, Rhodamine-123 staining, and in vitro sensitivity to 4- hydroperoxycyclophosphamide. In the case of LTC-IC, the production of different types of lineage-restricted and multipotent progeny was also analyzed. Most of the circulating LTC-IC and clonogenic cells in the CML patients studied (on average approximately 70% and approximately 90%, respectively) showed features of proliferating or activated cells. This is in marked contrast to the majority of progenitors in the blood of normal individuals and most of the LTC-IC in normal marrow, all of which exhibit a phenotype expected of quiescent cells. Interestingly, a significant proportion of the circulating clonogenic cells and LTC-IC in the CML samples studied (on average approximately 10% and approximately 30%, respectively) appeared to be phenotypically similar to normal circulating progenitors, although their absolute numbers were indicative of a neoplastic origin. Both phenotypes of circulating CML clonogenic cells and LTC-IC could be obtained at approximately 10% to 20% purity by differential multiparameter sorting. These findings suggest that expansion of the Philadelphia chromosome-positive clone at the level of the earliest types of hematopoietic cells results from the activation of mechanisms that enable some, but not all, signals that block the cycling of normal stem cells to be bypassed or overcome. In addition, they provide strategies for purifying these primitive leukemic cells that should facilitate further analysis of the mechanisms underlying their abnormal proliferative behavior.


2006 ◽  
Vol 17 (6) ◽  
pp. 631-639 ◽  
Author(s):  
Ulla Olsson-Str??mberg ◽  
Anna ??leskog ◽  
Anneli Bj??rnberg ◽  
Martin H??glund ◽  
Bengt Simonsson ◽  
...  

2021 ◽  
Author(s):  
Lyudmyla Shvachko ◽  
Michael Zavelevich ◽  
Daniil Gluzman ◽  
Gennadii Telegeev

The resistance to inhibitors of tyrosine kinase necessitates novel approaches to the therapy of chronic myeloid leukemia (CML). The progression of CML to blast crisis is associated with down-regulation of C/EBP-alpha being involved in the differentiation block in leukemic blast cells. Moreover, lowered C/EBP-alpha expression correlates with resistance to imatinib in CML. We have demonstrated that vitamin E up-regulates expression of C/EBP-alpha and down-regulates expression of Snail transcription factor in K562 cells in vitro contributing to the putative recovery of myeloid differentiation potential. In parallel with increased CEBP alpha expression, Vitamin E treatment results in the decreasing expression of placental-like alkaline phosphatase and increasing expression of tissue non-specific alkaline phosphatase. We suggest that vitamin E could be used as the plausible biological modulator to prevent the progression to blast crisis and to overcome drug resistance of leukemic cells in CML.


Blood ◽  
2003 ◽  
Vol 101 (6) ◽  
pp. 2152-2155 ◽  
Author(s):  
Thoralf Lange ◽  
Christine Günther ◽  
Thomas Köhler ◽  
Rainer Krahl ◽  
Scarlet Musiol ◽  
...  

Imatinib induces remissions in approximately 30% of patients with chronic myeloid leukemia (CML) in myeloid blast crisis (M-BC). Because most patients eventually relapse, allogeneic stem cell transplantation (SCT) in remission offers the best chance for cure. Remission induction with imatinib alone would seem ideal because it is less toxic than conventional chemotherapy. Conversely, patients unlikely to respond may benefit from combination therapy up front. To identify prognostic factors, we studied the mRNA expression of genes related to drug resistance and apoptosis in leukemic cells from patients with M-BC and their in vitro sensitivity to imatinib, and analyzed the results with other baseline factors for their impact on response. We show that high levels of BAX, low levels of MRP-1, and a high platelet count are independently predictive of response to imatinib. Combined into a score, these parameters may be clinically useful for risk-adapted patient stratification.


Blood ◽  
1992 ◽  
Vol 80 (10) ◽  
pp. 2522-2530 ◽  
Author(s):  
C Udomsakdi ◽  
CJ Eaves ◽  
PM Lansdorp ◽  
AC Eaves

The peripheral blood of chronic myeloid leukemia (CML) patients with chronic-phase disease and elevated white blood cell (WBC) counts typically contains markedly increased numbers of a variety of neoplastic pluripotent and lineage-restricted hematopoietic progenitors. These include cells detected in standard colony assays as well as their more primitive precursors. The latter are referred to as long-term culture-initiating cells (LTC-IC) because of their ability to generate clonogenic cell progeny detectable after a minimum of 5 weeks incubation on competent fibroblast feeder layers. In this study, we have investigated a number of the properties of the LTC-IC and clonogenic cells present in the blood of such CML patients with high WBC counts. This included an analysis of the light scattering properties of these progenitors, as well as their expression of CD34 and HLA-DR, Rhodamine-123 staining, and in vitro sensitivity to 4- hydroperoxycyclophosphamide. In the case of LTC-IC, the production of different types of lineage-restricted and multipotent progeny was also analyzed. Most of the circulating LTC-IC and clonogenic cells in the CML patients studied (on average approximately 70% and approximately 90%, respectively) showed features of proliferating or activated cells. This is in marked contrast to the majority of progenitors in the blood of normal individuals and most of the LTC-IC in normal marrow, all of which exhibit a phenotype expected of quiescent cells. Interestingly, a significant proportion of the circulating clonogenic cells and LTC-IC in the CML samples studied (on average approximately 10% and approximately 30%, respectively) appeared to be phenotypically similar to normal circulating progenitors, although their absolute numbers were indicative of a neoplastic origin. Both phenotypes of circulating CML clonogenic cells and LTC-IC could be obtained at approximately 10% to 20% purity by differential multiparameter sorting. These findings suggest that expansion of the Philadelphia chromosome-positive clone at the level of the earliest types of hematopoietic cells results from the activation of mechanisms that enable some, but not all, signals that block the cycling of normal stem cells to be bypassed or overcome. In addition, they provide strategies for purifying these primitive leukemic cells that should facilitate further analysis of the mechanisms underlying their abnormal proliferative behavior.


2019 ◽  
Author(s):  
Alec R. Nickolls ◽  
Michelle M. Lee ◽  
Kristen Zukosky ◽  
Barbara S. Mallon ◽  
Carsten G. Bönnemann

AbstractThe basal lamina is a specialized sheet of dense extracellular matrix (ECM), linked to the plasma membrane of specific cell types in their tissue context, that serves as a structural scaffold for organ genesis and maintenance. Disruption of the basal lamina and its functions is central to many disease processes, including cancer metastasis, kidney disease, eye disease, muscular dystrophies, and specific types of brain malformation. The latter three pathologies occur in the dystroglycanopathies, which are caused by dysfunction of the ECM receptor dystroglycan. However, opportunities to study the basal lamina in various human disease tissues are restricted due to its limited accessibility. Here, we report the generation of embryoid bodies from human induced pluripotent stem cells to model basal lamina formation. Embryoid bodies cultured via this protocol mimic pre-gastrulation embryonic development, consisting of an epithelial core surrounded by a basal lamina and a peripheral layer of ECM-secreting endoderm. In dystroglycanopathy patient embryoid bodies, electron and fluorescence microscopy revealed ultrastructural basal lamina defects and reduced ECM assembly. By starting from patient-derived cells, these results establish a method for the in vitro synthesis of patient-specific basal lamina and recapitulate disease-relevant ECM defects seen in muscular dystrophies. Finally, we applied this system to evaluate an experimental ribitol supplement therapy on genetically diverse dystroglycanopathy patient samples.


Sign in / Sign up

Export Citation Format

Share Document