scholarly journals Human embryoid bodies model basal lamina assembly and muscular dystrophy

2019 ◽  
Author(s):  
Alec R. Nickolls ◽  
Michelle M. Lee ◽  
Kristen Zukosky ◽  
Barbara S. Mallon ◽  
Carsten G. Bönnemann

AbstractThe basal lamina is a specialized sheet of dense extracellular matrix (ECM), linked to the plasma membrane of specific cell types in their tissue context, that serves as a structural scaffold for organ genesis and maintenance. Disruption of the basal lamina and its functions is central to many disease processes, including cancer metastasis, kidney disease, eye disease, muscular dystrophies, and specific types of brain malformation. The latter three pathologies occur in the dystroglycanopathies, which are caused by dysfunction of the ECM receptor dystroglycan. However, opportunities to study the basal lamina in various human disease tissues are restricted due to its limited accessibility. Here, we report the generation of embryoid bodies from human induced pluripotent stem cells to model basal lamina formation. Embryoid bodies cultured via this protocol mimic pre-gastrulation embryonic development, consisting of an epithelial core surrounded by a basal lamina and a peripheral layer of ECM-secreting endoderm. In dystroglycanopathy patient embryoid bodies, electron and fluorescence microscopy revealed ultrastructural basal lamina defects and reduced ECM assembly. By starting from patient-derived cells, these results establish a method for the in vitro synthesis of patient-specific basal lamina and recapitulate disease-relevant ECM defects seen in muscular dystrophies. Finally, we applied this system to evaluate an experimental ribitol supplement therapy on genetically diverse dystroglycanopathy patient samples.

2020 ◽  
Vol 15 (7) ◽  
pp. 1919-1933
Author(s):  
Juliana Ferreira Vasques ◽  
Rosalia Mendez-Otero ◽  
Fernanda Gubert

Amyotrophic lateral sclerosis (ALS) is a fatal disease that leads to progressive degeneration of motoneurons. Mutations in the C9ORF72, SOD1, TARDBP and FUS genes, among others, have been associated with ALS. Although motoneuron degeneration is the common outcome of ALS, different pathological mechanisms seem to be involved in this process, depending on the genotypic background of the patient. The advent of induced pluripotent stem cell (iPSC) technology enabled the development of patient-specific cell lines, from which it is possible to generate different cell types and search for phenotypic alterations. In this review, we summarize the pathophysiological markers detected in cells differentiated from iPSCs of ALS patients. In a translational perspective, iPSCs from ALS patients could be useful for drug screening, through stratifying patients according to their genetic background.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Laís Vicari de Figueiredo Pessôa ◽  
Pedro Ratto Lisboa Pires ◽  
Maite del Collado ◽  
Naira Caroline Godoy Pieri ◽  
Kaiana Recchia ◽  
...  

Introduction. Pluripotent stem cells are believed to have greater clinical potential than mesenchymal stem cells due to their ability to differentiate into almost any cell type of an organism, and since 2006, the generation of patient-specific induced pluripotent stem cells (iPSCs) has become possible in multiple species. Objectives. We hypothesize that different cell types respond differently to the reprogramming process; thus, the goals of this study were to isolate and characterize equine adult and fetal cells and induce these cells to pluripotency for future regenerative and translational purposes. Methods. Adult equine fibroblasts (eFibros) and mesenchymal cells derived from the bone marrow (eBMmsc), adipose tissue (eADmsc), and umbilical cord tissue (eUCmsc) were isolated, their multipotency was characterized, and the cells were induced in vitro into pluripotency (eiPSCs). eiPSCs were generated through a lentiviral system using the factors OCT4, SOX2, c-MYC, and KLF4. The morphology and in vitro pluripotency maintenance potential (alkaline phosphatase detection, embryoid body formation, in vitro spontaneous differentiation, and expression of pluripotency markers) of the eiPSCs were characterized. Additionally, a miRNA profile analysis of the mesenchymal and eiPSCs was performed. Results. Multipotent cells were successfully isolated, but the eBMmsc failed to generate eiPSCs. The eADmsc-, eUCmsc-, and eFibros-derived iPSCs were positive for alkaline phosphatase, OCT4 and NANOG, were exclusively dependent on bFGF, and formed embryoid bodies. The miRNA profile revealed a segregated pattern between the eiPSCs and multipotent controls: the levels of miR-302/367 and the miR-92 family were increased in the eiPSCs, while the levels of miR-23, miR-27, and miR-30, as well as the let-7 family were increased in the nonpluripotent cells. Conclusions. We were able to generate bFGF-dependent iPSCs from eADmsc, eUCmsc, and eFibros with human OSKM, and the miRNA profile revealed that clonal lines may respond differently to the reprogramming process.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 933-933
Author(s):  
Gladys Telliam ◽  
Christophe Desterke ◽  
Olivier Féraud ◽  
Frank Griscelli ◽  
Noufissa Oudrhiri ◽  
...  

Abstract Despite the major progress obtained in prognosis with the use of tyrosine kinase inhibitors (TKI), the great majority of patients with CML remain on long-term therapy and progression occurs in patients with either primary or secondary resistance. The mechanisms of progression towards accelerated phase (AP) and blast crisis (BC) have been studied so far only in primary patient samples in BC. Currently, there is no in vitro model to study sequentially the molecular events leading from CP to BC as only some primary sequential samples are amenable to analysis. Using induced Pluripotent Stem Cell (iPSC) technology, it is now possible to reprogram the primary leukemic cells to pluripotency and generate a major source of stem cells. To determine the feasibility of studying progression of CML towards AP and BC, we have used a patient-specific iPSC line that we have generated from the primary leukemic cells of a patient who later showed a TKI-resistance requiring an allogeneic stem cell transplant. These iPSC expressed BCR-ABL, exhibited all pluripotency markers and after injection in NSG mice, generated teratoma with differentiation into three germ layers. In hematopoietic differentiation assays using day 19-embryoid bodies (EB), increased numbers of hematopoietic progenitors were found as compared to control iPSC (5-fold increase n= 3). We have then treated leukemic iPSC with the mutagenic agent N-ethyl-N-nitrosourea (ENU) during regular medium changes. After 61 days in ENU cultures, day-19 derived embryoid bodies generated hematopoietic cells (>90% CD45+, CD43+) which proliferated in liquid cultures with myeloid and some blast cell morphology. Cytogenetic analyses of iPSC revealed chromosomal abnormalities such as loss of Y and loss of der q9+, both alterations known to occur in CML during progression. They exhibited increased numbers of micronuclei (MN) as compared to leukemic iPSC without ENU (X 3 Fold increase) suggesting acquisition of a progressive chromosomal instability. CGH array analyses were performed using ENU-treated iPSC-derived hematopoietic cells in two different timepoints as compared to leukemic iPSC cultured without ENU. Genomic aberrations were analyzed by Agilent Cytogenomics software with Mosaicism workflow on HG19 genome. 249 gene loci alterations were detected after polymorphism filtration on European population. These analyses showed DNA losses and DNA gains in genes implicated in mesoderm development and hematopoietic lineage as well as genes implicated in DNA damage response. Several loci of transcription factors were found to be involved such as IKZF1 described in imatinib-refractory chronic myeloid leukemia (Bolton-Gillespie et al. 2013). The aberrations included SIRT1and BLM which is implicated in DNA repair. Several cancer genes were found to be involved, some known to be altered in leukemia (BLM, IKZF1, NCOA2, ALK, EP300, ERG, MKL1, PHF6 and TET1). Remarkably, transcriptome geodataset GSE4170 (Radich et al. 2006) allowed us to associate 125 of 249 of the aberrations that we detected in CML iPSC, with the CML progression genes already described during progression from chronic and AP to BC (p-value =9.43E-32, after ANOVA with 1000 permutations). 38 most predictive aberrations allowed perfect reclassification of BC and chronic phase samples by unsupervised classification. Among these candidates, eleven of them have been described in CML physiopathology and connected to TKI resistance and genomic instability. Majority of them ( 7/11) are connected to chronic phase (FAS, ACTB, TRIM21, ANPEP, MLK1, CSF2RA, and MAGEC2) whereas a minority of them (4/11) are connected to BC (ACP1, SH3YL1, FHL1, IL3RA). Interestingly, these experiments also allowed us to discover the connection of a new multidrug resistance molecule associated to BC and having the ability to modify interferon pathway connected to the TKI sensitivity. Thus, genomic instability pattern that we have generated using a single leukemic iPSC allowed duplication of genomic abnormalities described in CML progression and allowed identification of some novel genes. Overall, these results demonstrated that we have generated for the first time to our knowledge, an in vitro BC model, reproducing genomic events described in patients with BC. This "blast crisis in a dish" tool using patient-derived iPSC will be of major interest to study CML progression and eventually to test novel therapies. Figure. Figure. Disclosures No relevant conflicts of interest to declare.


2017 ◽  
Vol 214 (10) ◽  
pp. 2817-2827 ◽  
Author(s):  
Julie R. Perlin ◽  
Anne L. Robertson ◽  
Leonard I. Zon

Hematopoietic stem cell transplantation (HSCT) is an important therapy for patients with a variety of hematological malignancies. HSCT would be greatly improved if patient-specific hematopoietic stem cells (HSCs) could be generated from induced pluripotent stem cells in vitro. There is an incomplete understanding of the genes and signals involved in HSC induction, migration, maintenance, and niche engraftment. Recent studies in zebrafish have revealed novel genes that are required for HSC induction and niche regulation of HSC homeostasis. Manipulation of these signaling pathways and cell types may improve HSC bioengineering, which could significantly advance critical, lifesaving HSCT therapies.


2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Casey L. Roberts ◽  
Silvia S. Chen ◽  
Angela C. Murchison ◽  
Rebecca A. Ogle ◽  
Michael P. Francis ◽  
...  

While induced pluripotent stem cells (iPSCs) hold great clinical promise, one hurdle that remains is the existence of a parental germ-layer memory in reprogrammed cells leading to preferential differentiation fates. While it is problematic for generating cells vastly different from the reprogrammed cells’ origins, it could be advantageous for the reliable generation of germ-layer specific cell types for future therapeutic use. Here we use human osteoblast-derived iPSCs (hOB-iPSCs) to generate induced osteoprogenitors (iOPs). Osteoblasts were successfully reprogrammed and demonstrated by endogenous upregulation of Oct4, Sox2, Nanog, TRA-1-81, TRA-16-1, SSEA3, and confirmatory hPSC Scorecard Algorithmic Assessment. The hOB-iPSCs formed embryoid bodies with cells of ectoderm and mesoderm but have low capacity to form endodermal cells. Differentiation into osteoprogenitors occurred within only 2–6 days, with a population doubling rate of less than 24 hrs; however, hOB-iPSC derived osteoprogenitors were only able to form osteogenic and chondrogenic cells but not adipogenic cells. Consistent with this, hOB-iOPs were found to have higher methylation of PPARγbut similar levels of methylation on the RUNX2 promoter. These data demonstrate that iPSCs can be generated from human osteoblasts, but variant methylation patterns affect their differentiation capacities. Therefore, epigenetic memory can be exploited for efficient generation of clinically relevant quantities of osteoprogenitor cells.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Ivana Acimovic ◽  
Aleksandra Vilotic ◽  
Martin Pesl ◽  
Alain Lacampagne ◽  
Petr Dvorak ◽  
...  

Human pluripotent stem cells (hPSCs), namely, embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), with their ability of indefinite self-renewal and capability to differentiate into cell types derivatives of all three germ layers, represent a powerful research tool in developmental biology, for drug screening, disease modelling, and potentially cell replacement therapy. Efficient differentiation protocols that would result in the cell type of our interest are needed for maximal exploitation of these cells. In the present work, we aim at focusing on the protocols for differentiation of hPSCs into functional cardiomyocytesin vitroas well as achievements in the heart disease modelling and drug testing on the patient-specific iPSC-derived cardiomyocytes (iPSC-CMs).


2018 ◽  
Vol 114 (14) ◽  
pp. 1828-1842 ◽  
Author(s):  
Alain van Mil ◽  
Geerthe Margriet Balk ◽  
Klaus Neef ◽  
Jan Willem Buikema ◽  
Folkert W Asselbergs ◽  
...  

Abstract In the past few years, the use of specific cell types derived from induced pluripotent stem cells (iPSCs) has developed into a powerful approach to investigate the cellular pathophysiology of numerous diseases. Despite advances in therapy, heart disease continues to be one of the leading causes of death in the developed world. A major difficulty in unravelling the underlying cellular processes of heart disease is the extremely limited availability of viable human cardiac cells reflecting the pathological phenotype of the disease at various stages. Thus, the development of methods for directed differentiation of iPSCs to cardiomyocytes (iPSC-CMs) has provided an intriguing option for the generation of patient-specific cardiac cells. In this review, a comprehensive overview of the currently published iPSC-CM models for hereditary heart disease is compiled and analysed. Besides the major findings of individual studies, detailed methodological information on iPSC generation, iPSC-CM differentiation, characterization, and maturation is included. Both, current advances in the field and challenges yet to overcome emphasize the potential of using patient-derived cell models to mimic genetic cardiac diseases.


Author(s):  
Purnima Singh ◽  
Tanmay Mondal ◽  
Kuldeep Kumar ◽  
Kinsuk Das ◽  
N Mahalakshmi ◽  
...  

Induced Pluripotent stem cells (iPSC) have a high ability to renew and differentiate themselves into various lineages and as vehicles of cell based therapy. Stem cell can differentiate under appropriate in vitro and in vivo conditions into different cell types. This study described the establishment of condition for in vitro expression of alpha MHC gene in cardiac differentiated canine iPSC (ciPSC). In vitro differentiation of canine iPSCs via embryoid bodies (EBs) were produced by ‘Hanging Drop’ method. EB’s were differentiated by using IMDM differentiation media: FBS – 10%, NEAA (100X) – 0.5%, Â-Mercaptoethanol- 100mM, Gentamycin- 5µg/ml supplemented with Azacytidine- 0.5µM. During differentiation, EBs were collected on day 4, 6, 8, 12, 16, 20 and 24 for characterization of cardiomyocytes specific marker expression. Total RNA from EBs were extracted by using Trizol method and subsequently cDNA were synthesized. The differentiated cells expressed cardiac specific gene (Alpha MHC) which started from day 6 of differentiation upto day 24 Immunocytochemistry and relative expression of cardiac specific genes revealed that ciPSC have the potential to differentiate into cardiomyocytes which can be used for cardiac tissue regeneration and as disease models for pharmaceutical testing.


Cells ◽  
2018 ◽  
Vol 7 (9) ◽  
pp. 140 ◽  
Author(s):  
Ruhel Ahmad ◽  
Vincenza Sportelli ◽  
Michael Ziller ◽  
Dietmar Spengler ◽  
Anke Hoffmann

Schizophrenia (SCZ) is a devastating mental disorder that is characterized by distortions in thinking, perception, emotion, language, sense of self, and behavior. Epidemiological evidence suggests that subtle perturbations in early neurodevelopment increase later susceptibility for disease, which typically manifests in adolescence to early adulthood. Early perturbations are thought to be significantly mediated through incompletely understood genetic risk factors. The advent of induced pluripotent stem cell (iPSC) technology allows for the in vitro analysis of disease-relevant neuronal cell types from the early stages of human brain development. Since iPSCs capture each donor’s genotype, comparison between neuronal cells derived from healthy and diseased individuals can provide important insights into the molecular and cellular basis of SCZ. In this review, we discuss results from an increasing number of iPSC-based SCZ/control studies that highlight alterations in neuronal differentiation, maturation, and neurotransmission in addition to perturbed mitochondrial function and micro-RNA expression. In light of this remarkable progress, we consider also ongoing challenges from the field of iPSC-based disease modeling that call for further improvements on the generation and design of patient-specific iPSC studies to ultimately progress from basic studies on SCZ to tailored treatments.


Development ◽  
2020 ◽  
Vol 147 (23) ◽  
pp. dev193631
Author(s):  
Nikolaos Konstantinides ◽  
Claude Desplan

ABSTRACTNeuronal replacement therapies rely on the in vitro differentiation of specific cell types from embryonic or induced pluripotent stem cells, or on the direct reprogramming of differentiated adult cells via the expression of transcription factors or signaling molecules. The factors used to induce differentiation or reprogramming are often identified by informed guesses based on differential gene expression or known roles for these factors during development. Moreover, differentiation protocols usually result in partly differentiated cells or the production of a mix of cell types. In this Hypothesis article, we suggest that, to overcome these inefficiencies and improve neuronal differentiation protocols, we need to take into account the developmental history of the desired cell types. Specifically, we present a strategy that uses single-cell sequencing techniques combined with machine learning as a principled method to select a sequence of programming factors that are important not only in adult neurons but also during differentiation.


Sign in / Sign up

Export Citation Format

Share Document