scholarly journals Release of arachidonic acid from human platelets. A key role for the potentiation of platelet aggregability in normal subjects as well as in those with nephrotic syndrome

Blood ◽  
1978 ◽  
Vol 52 (5) ◽  
pp. 969-977
Author(s):  
N Yoshida ◽  
N Aoki

Low (nonaggregating) concentrations of collagen that potentiate platelet aggregation did not induce the formation of measurable amount of malondialdehyde (MDA) but released small but significant amounts of radioactivity from 14C-arachidonic acid-labeled platelets. A major portion of the radioactive compounds released by nonaggregating concentrations of collagen existed as arachidonic acid and a minor part as thromboxane B2. The nephrotic syndrome enhances platelet aggregability, and this effect is abolished by correcting hypoalbuminemia in vitro and in vivo by the addition of albumin, which is the main carrier for free fatty acids, including arachidonic acid. Human albumin (fatty acid free) inhibited collagen-induced aggregation, MDA formation, and release of the radioactivity from 14C-arachidonic acid-labeled platelets in normals as well as in those with nephrotic syndrome. These data support our hypothesis that the main mechanism responsible for the potentiation of platelet aggregation is the release of arachidonic acid from platelet membrane phospholipids via the activation of phospholipase A2. Furthermore, enhanced platelet aggregation in the nephrotic syndrome was at least partly attributable to an increased availability of arachidonic acid released secondary to hypoalbuminemia. Albumin inhibits aggregation probably by binding to released arachidonic acid preventing arachidonic acid from being metabolized to potent aggregating substances, endoperoxides and thromboxane A2. The mechanism of release of arachidonic acid may play a key role in the potentiation of platelet aggregability in normals as well as in pathologic conditions such as the nephrotic syndrome.

Blood ◽  
1978 ◽  
Vol 52 (5) ◽  
pp. 969-977 ◽  
Author(s):  
N Yoshida ◽  
N Aoki

Abstract Low (nonaggregating) concentrations of collagen that potentiate platelet aggregation did not induce the formation of measurable amount of malondialdehyde (MDA) but released small but significant amounts of radioactivity from 14C-arachidonic acid-labeled platelets. A major portion of the radioactive compounds released by nonaggregating concentrations of collagen existed as arachidonic acid and a minor part as thromboxane B2. The nephrotic syndrome enhances platelet aggregability, and this effect is abolished by correcting hypoalbuminemia in vitro and in vivo by the addition of albumin, which is the main carrier for free fatty acids, including arachidonic acid. Human albumin (fatty acid free) inhibited collagen-induced aggregation, MDA formation, and release of the radioactivity from 14C-arachidonic acid-labeled platelets in normals as well as in those with nephrotic syndrome. These data support our hypothesis that the main mechanism responsible for the potentiation of platelet aggregation is the release of arachidonic acid from platelet membrane phospholipids via the activation of phospholipase A2. Furthermore, enhanced platelet aggregation in the nephrotic syndrome was at least partly attributable to an increased availability of arachidonic acid released secondary to hypoalbuminemia. Albumin inhibits aggregation probably by binding to released arachidonic acid preventing arachidonic acid from being metabolized to potent aggregating substances, endoperoxides and thromboxane A2. The mechanism of release of arachidonic acid may play a key role in the potentiation of platelet aggregability in normals as well as in pathologic conditions such as the nephrotic syndrome.


1988 ◽  
Vol 59 (03) ◽  
pp. 383-387 ◽  
Author(s):  
Margaret L Rand ◽  
Marian A Packham ◽  
Raelene L Kinlough-Rathbone ◽  
J Fraser Mustard

SummaryEthanol, at physiologically tolerable concentrations, did not affect the primary phase of ADP-induced aggregation of human or rabbit platelets, which is not associated with the secretion of granule contents. Potentiation by epinephrine of the primary phase of ADP-induced aggregation of rabbit platelets was also not inhibited by ethanol. However, ethanol did inhibit the secondary phase of ADP-induced aggregation which occurs with human platelets in citrated platelet-rich plasma and is dependent on the formation of thromboxane A2. Inhibition by ethanol of thromboxane production by stimulated platelets is likely due to inhibition of the mobilization of arachidonic acid from membrane phospholipids, as ethanol had little or no effect on aggregation and secretion induced by arachidonic acid or the thromboxane mimetic U46619. Rabbit platelet aggregation and secretion in response to low concentrations of collagen, thrombin, or PAF were inhibited by ethanol. Inhibition of the effects of thrombin and PAF was also observed with aspirin-treated platelets. Thus, in addition to inhibiting the mobilization of arachidonate for thromboxane formation that occurs with most agonists, ethanol can also inhibit aggregation and secretion through other effects on platelet responses.


1991 ◽  
Vol 65 (03) ◽  
pp. 312-316 ◽  
Author(s):  
P Minuz ◽  
C Lechi ◽  
E Arosio ◽  
P Guzzo ◽  
M Zannoni ◽  
...  

SummaryEffects of picotamide (900 mg in 3 oral administrations for 7 days) on ex vivo and in vivo platelet T×A2 production and on platelet aggregation wpre evaluated in 8 patients with peripheral arteriopathy and in 8 normal subjects. Picotamide significantly reduced ADP-induced platelet aggregation, but had no effect on that induced by arachidonic acid or the thromboxane analogue U46619. Though ex vivo platelet T×A2 production (T×B2 concentration after arachidonic-acid-induced aggregation) was reduced from 946 ± 141 (mean ± SD) to 285 ± 91 ng/ml in controls and from 1515 ± 673 to 732 ± 420 ng/ml in patients with arteriopathy, there was no effect on urinary excretion of 2,3-dinor-T×B2 (in vivo indicator of platelet T×A2 production), or on in vivo PGI2 production (urinary excretion of 6-keto-PGF1α and 2,3-dinor-6-keto-PGF1α). In the same subjects, single-dose aspirin reduced ex vivo T×B2 production by at least 98% and 2,3-dinor-T×B2 excretion from 116.7 ± 61.4 to 32.6 ± 17.0 nglg creatinine in control subjects, and from 156.3 ± 66.1 to 59.1 ± 19.2 ng/g creatinine in patients with peripheral arteriopathy. Our data suggest that inhibition of platelet T×A2 production in vivo may not be picotamide’s main mechanism of action.


1975 ◽  
Author(s):  
K. Zawilska ◽  
M. Komarnicki ◽  
B. Manka

ADP and collagen-induced platelet aggregations are diminished one hour after propanolol administration to normal subjects while adrenalin-induced aggregation and platelet factor 3 availability are not influenced. This effect of propanolol in vivo is very different from its in vitro action and is possibly related to the interaction adrenalin-ADP and collagen-ADP. Intermediary products of propanolol metabolism may also be involved in this effect.The administration of practololol to a second group of normal subjects had no effect on platelet aggregation and on platelet factor 3 availability.


1977 ◽  
Author(s):  
A. C. Carvalho ◽  
R. W. Colman ◽  
R. Vaillancourt ◽  
R. Cabrai ◽  
R. Anaya

Diazepam (Valium) is one of the most prescribed medications in the world. Patients on Diazepam may need platelet function evaluation. Therefore, a study of its effect on both in vivo and in vitro platelet function was undertaken in 8 normal volunteers. Diazepam (10–40μg/ml) was incubated in vitro with platelet rich plasma (250,000/μl) at intervals of 15, 30, 60, 120, and 240 minutes followed by determination of platelet aggregation and 14C-serotonin release. Fifty percent inhibition of platelet aggregation and release by Diazepam was obtained at 1 hr with epinephrine (p<0.01) and at 2 hrs with ADP (p<0.01), but no significant effect was noted with collagen. The Diazepam inhibitory effect on platelet aggregation and release was overcome by high concentrations of aggregating agents, suggesting that its primary effect is not mediated by inhibition of prostaglandin synthesis.Following oral ingestion of 5mg of Diazepam, platelet aggregation and 14C-serotonin release were determined serially (2, 4, 8, 12, 24, and 48 hours) in the 8 normal subjects. After 8 hours, Diazepam inhibited ADP-induced aggregation and release by 39% (p<0.01) and epinephrine by 50% (p<0.01). No significant inhibition of collagen was observed. Forty-eight hours after Diazepam intake, platelet function returned to normal in all subjects.Our data show that Diazepam impairs both platelet aggregation and release in vitro and in vivo. Although the effect of Diazepam on in vivo hemostasis is still uncertain, our results suggest caution in the interpretation of platelet function testing in patients on this drug.


1996 ◽  
Vol 85 (6) ◽  
pp. 1447-1453. ◽  
Author(s):  
Hideo Hirakata ◽  
Fumitaka Ushikubi ◽  
Hiroshi Toda ◽  
Kumi Nakamura ◽  
Satoko Sai ◽  
...  

Background Halothane increases bleeding time and suppresses platelet aggregation in vivo and in vitro. A previous study by the authors suggests that halothane inhibits platelet aggregation by reducing thromboxane (TX) A2 receptor-binding affinity. However, no studies of the effects of sevoflurane on platelet aggregation have been published. Methods The effects of sevoflurane, halothane, and isoflurane were examined at doses of 0.13-1.4 mM. Human platelet aggregation was induced by adenosine diphosphate, epinephrine, arachidonic acid, prostaglandin G2, and a TXA2 agonist ([+]-9, 11-epithia-11, 12-methano-TXA2, STA2) and measured by aggregometry. Platelet TXB2 levels were measured by radioimmunoassay, and the ligand-binding characteristics of the TXA2 receptors were examined by Scatchard analysis using a [3H]-labeled TXA2 receptor antagonist (5Z-7-(3-endo-([ring-4-[3H] phenyl) sulphonylamino-[2.2.1.] bicyclohept-2-exo-yl) heptenoic acid, [3H]S145). Results Isoflurane (0.28-0.84 mM) did not significantly affect platelet aggregation induced by adenosine diphosphate and epinephrine. Sevoflurane (0.13-0.91 mM) and halothane (0.49-1.25 mM) inhibited secondary platelet aggregation induced by adenosine diphosphate (1-10 microM) and epinephrine (1-10 microM) without altering primary aggregation. Sevoflurane (0.13 mM) also inhibited arachidonic acid-induced aggregation, but not that induced by prostaglandin G2 or STA2, although halothane (0.49 mM) inhibited the latter. Sevoflurane (3 mM) did not affect the binding of [3H]S145 to platelets, whereas halothane (3.3 mM) suppressed it strongly. Sevoflurane (0.26 mM) and halothane (0.98 mM) strongly suppressed TXB2 formation by arachidonic acid-stimulated platelets. Conclusions The findings that sevoflurane suppressed the effects of arachidonic acid, but not those of prostaglandin G2 and STA2, suggest strongly that sevoflurane inhibited TXA2 formation by suppressing cyclooxygenase activity. Halothane appeared to suppress both TXA2 formation and binding to its receptors. Sevoflurane has strong antiaggregatory effects at subanesthetic concentrations (greater than 0.13 mM; i.e., approximately 0.5 vol/%), whereas halothane has similar effects at somewhat greater anesthetic concentrations (0.49 mM; i.e., approximately 0.54 vol/%). Isoflurane at clinical concentration (0.84 mM; i.e., approximately 1.82 vol/%) does not affect platelet aggregation significantly.


1979 ◽  
Author(s):  
K.E. Sarji ◽  
J. Gonzalez ◽  
H. Hempling ◽  
J.A. Colwell

To determine whether Vitamin C might relate to the increased platelet sensitivity in the diabetic, we have measured levels of platelet Vitamin C and studied the effects of Vitamin C on platelet aggregation. Ascorbic acid levels in washed platelets from diabetics were significantly lower than from normals (4s.2±3 μg/1010 platelets vs. 2s.s±2 μg/1010 platelets, p<.001). The effects of ascorbic acid on platelet aggregation in vitro were studied by adding ascorbic acid in buffered solution (pH 7.35) prior to-aggregating agents. Ascorbic acid in platelet-rich plasma consistently inhibited platelet aggregation with threshold concentrations of ADP, epinephrine, and collagen. With washed platelets, ascorbic acid inhibited arachidonic, acid-induced aggregation. When platelets were incubated at 37°C for 10 minutes with varying concentrations of ascorbic acid, rewashed, and aggregation with arachidonic acid tested, aggregation was inhibited in a linear dose-dependent fashion. Oral ingestion of ascorbic acid (2 gm/day) for seven days by normal non-smoking males produced a marked inhibition of aggregation. In a similar study, platelets from an insulin-dependent diabetic showed no change in aggregation. These results suggest that platelet levels of ascorbic acid may relate to the hyperaggregat ion of platelets from diabetics.


1987 ◽  
Author(s):  
L Mannucci ◽  
R Redaelli ◽  
E Tremoll

To evaluate the effects of blood cells on the response of platelets to aggregating agents using whole blood impedance aggregometer, studies were carried out on whole blood (WB) of normal subjects and of patients with: polycythemia vera (PV), iatrogenic anemia (IA), primary thrombocytosis (PT), idiopathic thrombotic purpura (ITP), myeloid chronic leukemia (MCL), iatrogenic leukopenia (IL). The in vitro effects of red blood cells (RBC) and of white blood cells (WBC) on platelet rich plasma (PRP) aggregation were also evaluated. WB, PRP, WBC and RBC were prepared by conventional methods. Aggregation was performed using the impedance aggregometer (mod. 540, Chrono Log Corp). In normal subjects the concentration of collagen giving 50 % aggregation (AC50 ) found in PRP did not differ from that of WB, indicating that hematocrit values within the normal range did not appreciably affect platelet aggregation. The results obtained in WB of patients are summarized in the table: In vitro data showed that aggregation in prp in wb of normal subjects was related to the number of platelets present in the sample. RBC added to PRP significant reduced aggregation only when the RBC number was greater than 4.101 cells. No effect of WBC on collagen induced aggregation of PRP was observed, whereas significant inhibition was detected after ADP. It is concluded that the aggregation evaluated in WB with impedance method is dependent on the platelet number. Also, in vitro data and studies in WB of patients indicate that aggregation is significantly affected by the presence of cells other than platelets only in conditions of changes of the ratio between platelets and leukocytes and/or red cells.


Blood ◽  
1987 ◽  
Vol 69 (3) ◽  
pp. 924-928 ◽  
Author(s):  
JG Kelton ◽  
JC Moore ◽  
WG Murphy

Many patients with thrombotic thrombocytopenic purpura (TTP) have a platelet aggregating factor in their serum that may be pathologically linked with the disease process. To help characterize the type of platelet aggregation and platelet release induced by the sera from seven TTP patients, we measured the ability of a variety of inhibitors of platelet function as well as the ability of monoclonal antibodies (MoAbs) against platelet glycoproteins to inhibit TTP sera-induced platelet aggregation and release. These results were compared with the ability of the same inhibitors to block platelet aggregation induced by ristocetin, collagen, ADP, thrombin, and IgG-immune complexes. Monoclonal antibody directed against platelet glycoprotein Ib totally inhibited ristocetin-induced aggregation and release but had no effect on aggregation and release induced by the TTP sera or by any of the other platelet agonists. However, the MoAb against glycoproteins IIb/IIIa inhibited aggregation and release caused by TTP sera as well as by collagen, thrombin, and ADP but had no effect on aggregation and release induced by ristocetin. The aggregating activity could be abolished by heparin but not by the serine protease inhibitor PMSF (1 mmol/L). And although monomeric human IgG and purified Fc fragments of IgG inhibited IgG-immune complex-induced aggregation and release, they had no effect on TTP sera-induced aggregation and release nor on aggregation and release induced by any of the other agonists. Consistent with these in vitro studies showing no effect of IgG were the in vivo observations that intravenous (IV) IgG was without effect when administered to three patients with TTP. This study indicates that although a von Willebrand factor (vWF)-rich preparation of cryoprecipitate enhances the in vitro platelet aggregation and release caused by sera from the seven TTP patients we studied, the pathway of aggregation and release is not via platelet glycoprotein Ib. Also the aggregating factor of TTP sera is not neutralized in vitro or in vivo by IgG.


Blood ◽  
1980 ◽  
Vol 55 (6) ◽  
pp. 898-902 ◽  
Author(s):  
DE Hammerschmidt ◽  
TK Bowers ◽  
CJ Lammi-Keefe ◽  
HS Jacob ◽  
PR Craddock

Abstract We have previously shown that complement (C) activated plasma causes granulocyte (PMN) aggregation in vitro and that C5a is responsible. The C-induced aggregation of PMNs treated with cytochalasin-B (CB) is markedly enhanced and irreversible, and the magnitude of the response is proportional to the log (concentration of activated plasma), allowing use of this technique to detect C5a and hence C-activation. To compare the sensitivity of granulocyte aggregometry to that of more standard methods of detecting C-activation, we produced graded C- activation in vitro by treating fresh serum with varying amounts of zymosan. Aggregometry was the most sensitive index of C-activation, detecting C-activation, produced by 0.02 mg zymosan/ml of serum--1/10 that required to produce C-activation detectable by C3 immunoelectrophoresis (the next most sensitive technique). Granulocyte aggregometry may also be used to detect in vivo C-activation. We have found aggregating activity in plasmas from patients with systemic lupus erythematosus, immune vasculitis, transfusion reactions, and other conditions associated with in vivo C-activation, but not in the plasmas of normal subjects.


Sign in / Sign up

Export Citation Format

Share Document