scholarly journals The effects of alkyl-lysophospholipids on leukemic cell lines. I. Differential action on two human leukemic cell lines, HL60 and K562

Blood ◽  
1981 ◽  
Vol 57 (4) ◽  
pp. 794-797 ◽  
Author(s):  
T Tidwell ◽  
G Guzman ◽  
WR Vogler

Abstract The action of an alkyl-lysophospholipid (ALP), ET180CH3, on clonogenicity, 3H-TdR uptake, and cell numbers was tested in two human leukemic cell lines, HL60 and K562, and short-term human leukemic bone marrow cultures. ALP eliminated clonogenicity in HL60 but not in K562 cultures; 3H-TdR uptake and cell numbers were depressed at low concentrations of ET180CH3 in HL60, but not K562 cultures. The action of the lysophospholipid analog on human leukemic bone marrow short-term cultures at low concentrations was similar to its action on HL60 cultures; clonogenicity and 3H-TdR uptake were depressed, but cell numbers were not significantly affected. The demonstration of differential action of ALP on two cell lines should significantly simplify the investigation of the mechanism of the reported differential action of ET180CH3 on normal and leukemic cell membranes.

Blood ◽  
1981 ◽  
Vol 57 (4) ◽  
pp. 794-797
Author(s):  
T Tidwell ◽  
G Guzman ◽  
WR Vogler

The action of an alkyl-lysophospholipid (ALP), ET180CH3, on clonogenicity, 3H-TdR uptake, and cell numbers was tested in two human leukemic cell lines, HL60 and K562, and short-term human leukemic bone marrow cultures. ALP eliminated clonogenicity in HL60 but not in K562 cultures; 3H-TdR uptake and cell numbers were depressed at low concentrations of ET180CH3 in HL60, but not K562 cultures. The action of the lysophospholipid analog on human leukemic bone marrow short-term cultures at low concentrations was similar to its action on HL60 cultures; clonogenicity and 3H-TdR uptake were depressed, but cell numbers were not significantly affected. The demonstration of differential action of ALP on two cell lines should significantly simplify the investigation of the mechanism of the reported differential action of ET180CH3 on normal and leukemic cell membranes.


Blood ◽  
1991 ◽  
Vol 77 (9) ◽  
pp. 2079-2084 ◽  
Author(s):  
M Aihara ◽  
Y Aihara ◽  
G Schmidt-Wolf ◽  
I Schmidt-Wolf ◽  
BI Sikic ◽  
...  

Abstract Selective removal of malignant cells (purging) from bone marrow (BM) is a concern in autologous BM transplantation (ABMT). Use of vincristine, etoposide, or doxorubicin for purging could be rendered ineffective by the presence of multidrug-resistant (MDR) tumor cells. To circumvent this particular problem, we investigated whether 17F9, a monoclonal IgG2b antibody directed against the cell surface product of the MDR gene, P-glycoprotein, is effective in selective removal of MDR cells from BM when used with rabbit complement (C′). Using two different cell lines we have demonstrated that 17F9 + C′ selectively lyses MDR- positive cells. Three rounds of antibody + C′ resulted in 96.4% +/- 3.6% kill of K562/DOX and 100% +/- 0% of CEM/VLB cells. Mixtures of malignant cells and normal BM resulted in 99.85% removal of K562/DOX and 99.91% removal of CEM/VLB clonogenic cells. This treatment did not affect normal committed precursors compared with C′ alone. The addition of the cytotoxic agent etoposide (VP-16) following antibody purging results in a 4.6 log reduction of malignant cells. Furthermore, this antibody was effective when used against patients' leukemic blasts. These results suggest the use of 17F9 + C′ is effective and selective for removal of MDR cells from BM before ABMT and the addition of VP-16 enhances the purging efficacy.


Sign in / Sign up

Export Citation Format

Share Document