scholarly journals Increased IgG molecules bound to the surface of red blood cells of patients with sickle cell anemia

Blood ◽  
1984 ◽  
Vol 64 (1) ◽  
pp. 301-304 ◽  
Author(s):  
LD Petz ◽  
P Yam ◽  
L Wilkinson ◽  
G Garratty ◽  
B Lubin ◽  
...  

We have used the complement-fixing antibody consumption ( CFAC ) test to detect small concentrations of IgG on red blood cells from patients with hemolytic anemias that are not thought to be caused by an immune mechanism. Although patients with hereditary spherocytosis, pyruvate kinase deficiency, and mechanical hemolytic anemias generally had normal concentrations of IgG bound to their red cells (less than 25 molecules IgG per red cell), we found that 39/62 (63%) patients with sickle cell anemia had elevated values. These 39 patients had a mean of 195 and a maximum of 890 molecules of IgG per red cell. None of the patients had been transfused within the previous 90 days, and some had never been transfused. Direct antiglobulin tests were positive in only two instances and autoantibodies were not found in the serum of any patient. However, eluates from the red cells of 6 of 23 patients demonstrated antibody activity against all of a panel of normal red cells by the indirect antiglobulin test. There was no correlation between the number of IgG molecules on patients' red cells and the severity of their anemia, the incidence of painful sickle cell crises, the reticulocyte count, or with blood transfusion history. We conclude that further study of immunohematologic abnormalities in patients with sickle cell anemia is warranted, especially in view of previous reports in this population of patients with red cell autoantibodies, autoimmune hemolytic anemia, hemolytic transfusion reactions without detectable alloantibodies, and an association of some episodes of pain crises with immunologically mediated red cell destruction.

Blood ◽  
1984 ◽  
Vol 64 (1) ◽  
pp. 301-304 ◽  
Author(s):  
LD Petz ◽  
P Yam ◽  
L Wilkinson ◽  
G Garratty ◽  
B Lubin ◽  
...  

Abstract We have used the complement-fixing antibody consumption ( CFAC ) test to detect small concentrations of IgG on red blood cells from patients with hemolytic anemias that are not thought to be caused by an immune mechanism. Although patients with hereditary spherocytosis, pyruvate kinase deficiency, and mechanical hemolytic anemias generally had normal concentrations of IgG bound to their red cells (less than 25 molecules IgG per red cell), we found that 39/62 (63%) patients with sickle cell anemia had elevated values. These 39 patients had a mean of 195 and a maximum of 890 molecules of IgG per red cell. None of the patients had been transfused within the previous 90 days, and some had never been transfused. Direct antiglobulin tests were positive in only two instances and autoantibodies were not found in the serum of any patient. However, eluates from the red cells of 6 of 23 patients demonstrated antibody activity against all of a panel of normal red cells by the indirect antiglobulin test. There was no correlation between the number of IgG molecules on patients' red cells and the severity of their anemia, the incidence of painful sickle cell crises, the reticulocyte count, or with blood transfusion history. We conclude that further study of immunohematologic abnormalities in patients with sickle cell anemia is warranted, especially in view of previous reports in this population of patients with red cell autoantibodies, autoimmune hemolytic anemia, hemolytic transfusion reactions without detectable alloantibodies, and an association of some episodes of pain crises with immunologically mediated red cell destruction.


Blood ◽  
2001 ◽  
Vol 98 (5) ◽  
pp. 1577-1584 ◽  
Author(s):  
Kitty de Jong ◽  
Renee K. Emerson ◽  
James Butler ◽  
Jacob Bastacky ◽  
Narla Mohandas ◽  
...  

Several transgenic murine models for sickle cell anemia have been developed that closely reproduce the biochemical and physiological disorders in the human disease. A comprehensive characterization is described of hematologic parameters of mature red blood cells, reticulocytes, and red cell precursors in the bone marrow and spleen of a murine sickle cell model in which erythroid cells expressed exclusively human α, γ, and βS globin. Red cell survival was dramatically decreased in these anemic animals, partially compensated by considerable enhancement in erythropoietic activity. As in humans, these murine sickle cells contain a subpopulation of phosphatidylserine-exposing cells that may play a role in their premature removal. Continuous in vivo generation of this phosphatidylserine-exposing subset may have a significant impact on the pathophysiology of sickle cell disease.


2021 ◽  
Vol 26 (09) ◽  
Author(s):  
Endris Muhammed ◽  
James Cooper ◽  
Daniel Devito ◽  
Robert Mushi ◽  
Maria del Pilar Aguinaga ◽  
...  

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 29-30
Author(s):  
Yuanbin Song ◽  
Rana Gbyli ◽  
Liang Shan ◽  
Wei Liu ◽  
Yimeng Gao ◽  
...  

In vivo models of human erythropoiesis with generation of circulating mature human red blood cells (huRBC) have remained elusive, limiting studies of primary human red cell disorders. In our prior study, we have generated the first combined cytokine-liver humanized immunodeficient mouse model (huHepMISTRG-Fah) with fully mature, circulating huRBC when engrafted with human CD34+ hematopoietic stem and progenitor cells (HSPCs)1. Here we present for the first time a humanized mouse model of human sickle cell disease (SCD) which replicates the hallmark pathophysiologic finding of vaso-occlusion in mice engrafted with primary patient-derived SCD HSPCs. SCD is an inherited blood disorder caused by a single point mutation in the beta-globin gene. Murine models of SCD exclusively express human globins in mouse red blood cells in the background of murine globin knockouts2 which exclusively contain murine erythropoiesis and red cells and thus fail to capture the heterogeneity encountered in patients. To determine whether enhanced erythropoiesis and most importantly circulating huRBC in engrafted huHepMISTRG-Fah mice would be sufficient to replicate the pathophysiology of SCD, we engrafted it with adult SCD BM CD34+ cells as well as age-matched control BM CD34+ cells. Overall huCD45+ and erythroid engraftment in BM (Fig. a, b) and PB (Fig. c, d) were similar between control or SCD. Using multispectral imaging flow cytometry, we observed sickling huRBCs (7-11 sickling huRBCs/ 100 huRBCs) in the PB of SCD (Fig. e) but not in control CD34+ (Fig. f) engrafted mice. To determine whether circulating huRBC would result in vaso-occlusion and associated findings in SCD engrafted huHepMISTRG-Fah mice, we evaluated histological sections of lung, liver, spleen, and kidney from control and SCD CD34+ engrafted mice. SCD CD34+ engrafted mice lungs showed an increase in alveolar macrophages (arrowheads) associated with alveolar hemorrhage and thrombosis (arrows) but not observed control engrafted mice (Fig. g). Spleens of SCD engrafted mice showed erythroid precursor expansion, sickled erythrocytes in the sinusoids (arrowheads), and vascular occlusion and thrombosis (arrows) (Fig. h). Liver architecture was disrupted in SCD engrafted mice with RBCs in sinusoids and microvascular thromboses (Fig. i). Congestion of capillary loops and peritubular capillaries and glomeruli engorged with sickled RBCs was evident in kidneys (Fig. j) of SCD but not control CD34+ engrafted mice. SCD is characterized by ineffective erythropoiesis due to structural abnormalities in erythroid precursors3. As a functional structural unit, erythroblastic islands (EBIs) represent a specialized niche for erythropoiesis, where a central macrophage is surrounded by developing erythroblasts of varying differentiation states4. In our study, both SCD (Fig. k) and control (Fig. l) CD34+ engrafted mice exhibited EBIs with huCD169+ huCD14+ central macrophages surrounded by varying stages of huCD235a+ erythroid progenitors, including enucleated huRBCs (arrows). This implies that huHepMISTRG-Fah mice have the capability to generate human EBIs in vivo and thus represent a valuable tool to not only study the effects of mature RBC but also to elucidate mechanisms of ineffective erythropoiesis in SCD and other red cell disorders. In conclusion, we successfully engrafted adult SCD patient BM derived CD34+ cells in huHepMISTRG-Fah mice and detected circulating, sickling huRBCs in the mouse PB. We observed pathological changes in the lung, spleen, liver and kidney, which are comparable to what is seen in the established SCD mouse models and in patients. In addition, huHepMISTRG-Fah mice offer the opportunity to study the role of the central macrophage in human erythropoiesis in health and disease in an immunologically advantageous context. This novel mouse model could therefore serve to open novel avenues for therapeutic advances in SCD. Reference 1. Song Y, Shan L, Gybli R, et. al. In Vivo reconstruction of Human Erythropoiesis with Circulating Mature Human RBCs in Humanized Liver Mistrg Mice. Blood. 2019;134:338. 2. Ryan TM, Ciavatta DJ, Townes TM. Knockout-transgenic mouse model of sickle cell disease. Science. 1997;278(5339):873-876. 3. Blouin MJ, De Paepe ME, Trudel M. Altered hematopoiesis in murine sickle cell disease. Blood. 1999;94(4):1451-1459. 4. Manwani D, Bieker JJ. The erythroblastic island. Curr Top Dev Biol. 2008;82:23-53. Disclosures Xu: Seattle Genetics: Membership on an entity's Board of Directors or advisory committees. Flavell:Zai labs: Consultancy; GSK: Consultancy.


Blood ◽  
1982 ◽  
Vol 60 (6) ◽  
pp. 1332-1336 ◽  
Author(s):  
MG Luthra ◽  
DA Sears

Abstract To determine whether diminished activity of the Ca++ extrusion pump could account for the high levels of red blood cell (RBC) Ca++ in sickle cell anemia (SS), we measured calmodulin-sensitive Ca++ ATPase activity in normal and SS RBC. Hemolysates prepared with saponin were compared, since such preparations expressed maximum ATPase activities, exceeding isolated membranes or reconstituted systems of membranes plus cytosol, SS RBC hemolysates had greater Ca++ ATPase activity than normal hemolysates; they exhibited higher Mg++ and Na+ + K+ ATPase activities as well. Assays on density (age) fractions of SS and normal red cells demonstrated that all ATPase activities were highest in low density (young) cells, and activities in SS red cells exceeded those in normals in all fractions studied. Thus, when studied under conditions that maximize enzyme activity, Ca++ ATPase activity, like Mg++ and Na+ + K+ ATPase, is actually increased in SS RBC, probably due to the young red cell population present. The elevated Ca++ levels in these cells are more likely due to an increased Ca++ leak or abnormal calcium binding than to defective extrusion by the ATPase pump.


2019 ◽  
Vol 7 (6) ◽  
pp. e14027 ◽  
Author(s):  
Halima Al Balushi ◽  
Kobina Dufu ◽  
David C. Rees ◽  
John N. Brewin ◽  
Anke Hannemann ◽  
...  

2014 ◽  
Vol 6 (1) ◽  
pp. e2014066 ◽  
Author(s):  
Marco Marziali ◽  
Antonella Isgrò ◽  
Pietro Sodani ◽  
Javid Gaziev ◽  
Daniela Fraboni ◽  
...  

Allogeneic cellular gene therapy through hematopoietic stem cell transplantation is the only radical cure for congenital hemoglobinopathies like thalassemia and sickle cell anemia. Persistent mixed hematopoietic chimerism (PMC) has been described in thalassemia and sickle cell anemia. Here, we describe the clinical course of a 6-year-old girl who had received bone marrow transplant for sickle cell anemia. After the transplant, the patient showed 36% donor hematopoietic stem cells in the bone marrow, whereas in the peripheral blood there was evidence of 80%  circulating donor red blood cells (RBC). The analysis of apoptosis at the Bone Marrow  level suggests that Fas might contribute to the cell death of host erythroid precursors. The increase in NK cells and the regulatory T cell population observed in this patient suggests that these cells might contribute to the condition of mixed chimerism.


Blood ◽  
1977 ◽  
Vol 49 (6) ◽  
pp. 967-979 ◽  
Author(s):  
EE Rieber ◽  
G Veliz ◽  
S Pollack

Abstract The pathophysiology of the occurrence and resolution of sickle cell crisis is unknown. The molecular abnormality is constant, while crisis is episodic. In the present study, red cell filterability and sickling with deoxygenation have been measured during sickle cell crises. Recovery from sickle crisis is associated with an increased filterability of the circulating red cell and a decreased susceptibility of the red cell to sickle with deoxygenation (p less than 0.05). The possibility that these changes are responsible for the resolution of crisis is suggested.


Blood ◽  
1959 ◽  
Vol 14 (4) ◽  
pp. 399-408 ◽  
Author(s):  
WILLIAM H. CROSBY

Abstract During all the stages of a red cell’s life the normal spleen exerts a normal function. Eight of these functions have been considered: (1) erythropoiesis; (2) an effect upon red cell production; (3) an effect upon maturation of the red cell surface; (4) the reservoir function; (5) the "culling function"; (6) iron turnover and storage; (7) the "pitting function"; (8) destruction of old red cells.


Sign in / Sign up

Export Citation Format

Share Document