scholarly journals Production of granulocyte-macrophage colony-stimulating factor by Abelson virus-induced tumorigenic mast cell lines

Blood ◽  
1986 ◽  
Vol 68 (5) ◽  
pp. 1074-1081
Author(s):  
SW Chung ◽  
PM Wong ◽  
G Shen-Ong ◽  
S Ruscetti ◽  
T Ishizaka ◽  
...  

We have recently described a system that supports the development of continuously growing and tumorigenic cell lines after infection of individual multilineage hematopoietic colonies with Abelson murine leukemia virus (A-MuLV). We now provide definitive evidence that these transformed lines express features characteristic of mast cells. Although these lines have been maintained in some cases for more than a year in the absence of exogenous growth factors other than those present in fetal calf serum, colony formation could consistently after 2 months, and variably after 5 months, be shown to be increased several fold when pokeweed mitogen-stimulated spleen cell conditioned medium (CM) was added to the cultures. CM from the A-MuLV-transformed lines was then tested for its ability to stimulate hematopoietic colony formation by cells from both fetal and adult tissues. Four of four randomly selected cell lines produced factors that were active on erythropoietic, granulopoietic, and in some cases pluripotent progenitors. Removal of viral particles from the CM from one of the lines (27d1) by either heat inactivation or high-speed centrifugation did not alter the colony-stimulating activity detected. When CM from 27d1 cells was tested for its ability to stimulate the proliferation of interleukin 3 (IL3) granulocyte-macrophage colony-stimulating factor (GM-CSF)-dependent FDC-P1 cells, a positive result was obtained. This stimulatory activity was not reduced in the presence of neutralizing anti-IL 3 immunoglobulin (Ig), suggesting that the activity detected was GM-CSF and not IL 3. This was confirmed by the lack of expression of the IL 3 gene in 27d1 cells as determined by Northern analysis of 27d1 cell RNA. Furthermore, S1 analysis of mRNA from 27d1 cells as well as two other lines indicated that the GM-CSF gene in all three was transcriptionally active. Taken together, these data suggest that A- MuLV transformation of normal mast cells or their precursors under certain conditions commonly activates the production of GM-CSF.

Blood ◽  
1986 ◽  
Vol 68 (5) ◽  
pp. 1074-1081 ◽  
Author(s):  
SW Chung ◽  
PM Wong ◽  
G Shen-Ong ◽  
S Ruscetti ◽  
T Ishizaka ◽  
...  

Abstract We have recently described a system that supports the development of continuously growing and tumorigenic cell lines after infection of individual multilineage hematopoietic colonies with Abelson murine leukemia virus (A-MuLV). We now provide definitive evidence that these transformed lines express features characteristic of mast cells. Although these lines have been maintained in some cases for more than a year in the absence of exogenous growth factors other than those present in fetal calf serum, colony formation could consistently after 2 months, and variably after 5 months, be shown to be increased several fold when pokeweed mitogen-stimulated spleen cell conditioned medium (CM) was added to the cultures. CM from the A-MuLV-transformed lines was then tested for its ability to stimulate hematopoietic colony formation by cells from both fetal and adult tissues. Four of four randomly selected cell lines produced factors that were active on erythropoietic, granulopoietic, and in some cases pluripotent progenitors. Removal of viral particles from the CM from one of the lines (27d1) by either heat inactivation or high-speed centrifugation did not alter the colony-stimulating activity detected. When CM from 27d1 cells was tested for its ability to stimulate the proliferation of interleukin 3 (IL3) granulocyte-macrophage colony-stimulating factor (GM-CSF)-dependent FDC-P1 cells, a positive result was obtained. This stimulatory activity was not reduced in the presence of neutralizing anti-IL 3 immunoglobulin (Ig), suggesting that the activity detected was GM-CSF and not IL 3. This was confirmed by the lack of expression of the IL 3 gene in 27d1 cells as determined by Northern analysis of 27d1 cell RNA. Furthermore, S1 analysis of mRNA from 27d1 cells as well as two other lines indicated that the GM-CSF gene in all three was transcriptionally active. Taken together, these data suggest that A- MuLV transformation of normal mast cells or their precursors under certain conditions commonly activates the production of GM-CSF.


Blood ◽  
1986 ◽  
Vol 67 (1) ◽  
pp. 37-45 ◽  
Author(s):  
D Metcalf ◽  
CG Begley ◽  
GR Johnson ◽  
NA Nicola ◽  
MA Vadas ◽  
...  

Recombinant human granulocyte-macrophage colony-stimulating factor (rH GM-CSF) was purified to homogeneity from medium conditioned by COS cells transfected with a cloned human GM-CSF cDNA and shown to be an effective proliferative stimulus in human marrow cultures for GM and eosinophil colony formation. The specific activity of purified rH GM- CSF in human marrow cultures was calculated to be at least 4 X 10(7) U/mg protein. Clone transfer experiments showed that this proliferation was due to direct stimulation of responding clonogenic cells. Acting alone, rH GM-CSF did not stimulate erythroid colony formation, but in combination with erythropoietin, increased erythroid and multipotential colony formation in cultures of peripheral blood cells. rH GM-CSF had no proliferative effects on adult or fetal murine hematopoietic cells, did not induce differentiation in murine myelomonocytic WEHI-3B cells, and was unable to stimulate the survival or proliferation of murine hematopoietic cell lines dependent on murine multi-CSF (IL 3). rH GM- CSF stimulated antibody-dependent cytolysis of tumor cells by both mature human neutrophils and eosinophils and increased eosinophil autofluorescence and phagocytosis by neutrophils. From a comparison of these effects with those of semipurified preparations of human CSF alpha and -beta, it was concluded that rH GM-CSF exhibited all the biologic activities previously noted for CSF alpha.


Blood ◽  
1989 ◽  
Vol 74 (1) ◽  
pp. 42-48 ◽  
Author(s):  
N Komatsu ◽  
T Suda ◽  
M Moroi ◽  
N Tokuyama ◽  
Y Sakata ◽  
...  

Abstract Recently, a human megakaryoblastic cell line, CMK, was established from the peripheral blood of a megakaryoblastic leukemia patient with Down syndrome. Using this cell line, we studied the proliferation and differentiation of megakaryocytic cells in the presence of highly purified human hematopoietic factors and phorbol 12-myristate-13- acetate (PMA). In a methylcellulose culture system, interleukin-3 (IL- 3) and granulocyte-macrophage colony-stimulating factor (GM-CSF) facilitated colony formation by CMK cells in a dose-dependent manner. The maximum stimulating doses of these factors were 10 and 200 U/mL, respectively. These concentrations were comparable to those that stimulate activity in normal hematopoietic cells. In contrast, granulocyte-colony stimulating factor (G-CSF), macrophage-colony stimulating factor (M-CSF), and erythropoietin (EPO) had no effects on the colony formation of CMK cells. In a liquid culture system, 20% of the CMK cells expressed glycoprotein IIb/IIIa (GPIIb/IIIa) antigen without hematopoietic factors, whereas 40% of the cells expressed GPIIb/IIIa with the addition of IL-3 and GM-CSF. EPO also slightly enhanced expression of GPIIb/IIIa. On the other hand, PMA inhibited growth of CMK cells and induced most of them to express the GPIIb/IIIa antigen. Furthermore, PMA induced CMK cells to produce growth activity toward new inocula of CMK cells. This growth factor (GF) contained colony-stimulating activity (CSA) in normal bone marrow (BM) cells. The activity was believed to be attributable mainly to GM-CSF, since 64% of this activity was neutralized by anti-GM-CSF antibodies and a transcript of GM-CSF was detected in mRNA from PMA-treated CMK cells by Northern blot analysis. These observations suggest that GM-CSF, as well as IL-3, should play an important role in megakaryocytopoiesis.


Blood ◽  
2001 ◽  
Vol 98 (10) ◽  
pp. 3165-3168 ◽  
Author(s):  
Barbara McClure ◽  
Frank Stomski ◽  
Angel Lopez ◽  
Joanna Woodcock

Abstract Transfected murine cell lines are commonly used to study the function of many human cytokine or receptor mutants. This study reports the inappropriate activation of the human granulocyte-macrophage colony-stimulating factor (hGM-CSF) receptor by the human GM-CSF antagonist, E21R, when the human receptor is introduced into the murine cell line BaF-B03. E21R-induced proliferation of the BaF-B03 cells is dependent on transfection with both hGM-CSF receptor α and βc subunits. Studies on the underlying mechanism revealed constitutive association between human and mouse βc and GM-CSF receptor-α, tyrosine phosphorylation of mouse and human βc, and association of phosphorylated mouse βc into an activated human GM-CSF receptor complex in response to E21R and GM-CSF. This interspecies receptor cross-talk of receptor signaling subunits may produce misleading results and emphasizes the need to use cell lines devoid of the cognate endogenous receptors for functional analysis of ligand and receptor mutants.


Blood ◽  
1991 ◽  
Vol 78 (3) ◽  
pp. 609-615 ◽  
Author(s):  
GC Baldwin ◽  
DW Golde ◽  
GF Widhopf ◽  
J Economou ◽  
JC Gasson

Abstract Hematopoietic growth factor receptors are present on cells of normal nonhematopoietic tissues such as endothelium and placenta. We previously demonstrated functional human granulocyte-macrophage colony- stimulating factor (GM-CSF) receptors on small cell carcinoma of the lung cell lines, and others have reported that certain solid tumor cell lines respond to GM-CSF in clonogenic assays. In the current study, we examine human melanoma cell lines and fresh specimens of melanoma to determine whether they have functional GM-CSF receptors. Scatchard analyses of 125I-GM-CSF equilibrium binding to melanoma cell lines showed a mean of 542 +/- 67 sites per cell with a kd of 0.72 +/- 0.14 nmol/L. Cross-linking studies in the melanoma cell line, M14, showed a major GM-CSF receptor species of 84,000 daltons. Under the conditions tested, the M14 cells did not have a proliferative response to GM-CSF in vitro, nor was any induction of primary response genes detected by Northern analysis in response to GM-CSF. Studies to determine internal translocation of the receptor-ligand complex indicated less than 10% of the 125I-GM-CSF internalized was specifically bound to receptors. Primary melanoma cells from five surgical specimens had GM-CSF receptors; Scatchard analysis was performed on one sample, showing 555 sites/cell with a kd of 0.23 nmol/L. These results indicate that human tumor cells may express a low-affinity GM-CSF receptor protein that localizes to the cell surface and binds ligand, but lacks functional components or accessory factors needed to transduce a signal.


1987 ◽  
Vol 166 (6) ◽  
pp. 1851-1860 ◽  
Author(s):  
D Caracciolo ◽  
N Shirsat ◽  
G G Wong ◽  
B Lange ◽  
S Clark ◽  
...  

Human macrophage colony-stimulating factor (M-CSF or CSF-1), either in purified or in recombinant form, is able to generate macrophagic colonies in a murine bone marrow colony assay, but only stimulates small macrophagic colonies of 40-50 cells in a human bone marrow colony assay. We report here that recombinant human granulocytic/macrophage colony stimulating factor (rhGM-CSF) at concentrations in the range of picograms enhances the responsiveness of bone marrow progenitors to M-CSF activity, resulting in an increased number of macrophagic colonies of up to 300 cells. Polyclonal antiserum against M-CSF did not alter colony formation of bone marrow progenitors incubated with GM-CSF at optimal concentration (1-10 ng/ml) for these in vitro assays. Thus, GM-CSF at higher concentrations (nanogram range) can by itself, elicit macrophagic colonies, and at lower concentrations (picogram range) acts to enhance the responsiveness of these progenitors to M-CSF.


1994 ◽  
Vol 14 (3) ◽  
pp. 2213-2221
Author(s):  
J K Fraser ◽  
J J Guerra ◽  
C Y Nguyen ◽  
J E Indes ◽  
J C Gasson ◽  
...  

Human granulocyte-macrophage colony-stimulating factor (GM-CSF) stimulates the proliferation and maturation of normal myeloid progenitor cells and can also stimulate the growth of acute myelogenous leukemia (AML) blasts. GM-CSF is not normally produced by resting cells but is expressed by a variety of activated cells including T lymphocytes, macrophages, and certain cytokine-stimulated fibroblasts and endothelial cells. Production of GM-CSF by cultured AML cells has been demonstrated, and GM-CSF expression by normal myeloid progenitors has been postulated to play a role in myelopoiesis. We have investigated the regulation of expression of GM-CSF in AML cell lines, and our results demonstrate the presence of a strong constitutive promoter element contained within 53 bp upstream of the cap site. We have also identified a negative regulatory element located immediately upstream of the positive regulatory element (within 69 bp of the cap site) that is active in AML cell lines but not T cells or K562 CML cells. Competition transfection and mobility shift studies demonstrate that this activity correlates with binding of a 45-kDa protein.


1993 ◽  
Vol 13 (5) ◽  
pp. 2787-2801
Author(s):  
H Nomiyama ◽  
K Hieshima ◽  
K Hirokawa ◽  
T Hattori ◽  
K Takatsuki ◽  
...  

Cytokine LD78 is a human counterpart of the mouse macrophage inflammatory protein 1 alpha/hematopoietic stem cell inhibitor. Promoters of the LD78 alpha and LD78 beta genes showed similar inducible activities in two leukemic cell lines, K562 and Jurkat, but the induction mechanisms differed between the two cell lines. Further characterization of the LD78 alpha promoter indicated that multiple positive and negative regulatory elements are present, some of which are differentially required for induction and repression of the promoter activity in different cells. One of the negative regulatory elements, ICK-1, functioned in both cell lines in the absence and presence of stimulation and was shown to be a recognition site for positive and negative transcriptional factors. This ICK-1 element contained a direct repeat, and similar repeats were also found in the negative regulatory elements of hematopoietic growth factor interleukin-3 (IL-3) and granulocyte-macrophage colony-stimulating factor (GM-CSF) gene promoters. Nuclear extracts from K562 and Jurkat cells formed several protein-DNA complexes with the LD78 alpha ICK-1 element, one of which was also observed with the IL-3 and GM-CSF ICK-1 elements. Results from in vivo and in vitro analyses suggested that the protein forming this complex functions as a negative factor. The binding affinity of this protein, ICK-1A, to the LD78 alpha ICK-1 element was low and was significantly affected by the incubation temperature and the salt concentration in the binding buffer. ICK-1B, another protein bound specifically by the LD78 alpha ICK-1 element, was shown to be a positive factor important for induction of the promoter. These results suggested that ICK-1A plays an important role in balanced expression of LD78, IL-3, and GM-CSF during hematopoietic cell growth and differentiation.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4211-4211
Author(s):  
Yoshiki Uemura ◽  
Makoto Kobayashi ◽  
Hideshi Nakata ◽  
Tetsuya Kubota ◽  
Hirokuni Taguchi

Abstract In advanced clinical stage, many cases of lung cancer produce colony-stimulating factors (CSFs), including granulocyte-colony stimulating factor (G-CSF), granulocyte macrophage-colony stimulating factor (GM-CSF), and macrophage-colony stimulating factor (M-CSF). The biological properties of the overproduction of CSFs by tumor cells are not well understood. We previously found that CSFs produced by two lung cancer cell lines, OKa-C-1 and MI-4, which constitutively produce abundant amounts of G-CSF, GM-CSF, and M-CSF, stimulate the tumor’s own growth through an autoctine mechanism. In this study, we examined whether CSFs produced by tumor cells contribute to the invasion of the tumor itself. Invasive behaviors of the cancer cells were stimulated by exogenous CSFs but were suppressed by neutralizing antibodies against the CSFs. Matrix-degrading proteinases also are essential for successful tumor cell metastasis. Gelatin zymographs of conditioned media revealed two major bands of gelatinase activity at 68 and 92 kDa. The enzyme activities at 68 and 92 kDa were significantly enhanced in the presence of each CSF in the cell lines but were suppressed by the antibodies against the CSFs. The two gelatinase bands were characterized as matrix metalloproteinase (MMP)-2 and MMP-9, respectively. Our findings suggest that CSFs produced by tumor cells might be closely associated with the tumor invasion through gelatinase activation in CSF-producing lung cancer cells. In addition, an increase of invasion capacity and gelatinase activity by the CSFs might be mediated through the p44/42 mitogen-activated protein kinase (MAPK) signaling pathway. Figure Figure


Blood ◽  
1991 ◽  
Vol 78 (3) ◽  
pp. 609-615 ◽  
Author(s):  
GC Baldwin ◽  
DW Golde ◽  
GF Widhopf ◽  
J Economou ◽  
JC Gasson

Hematopoietic growth factor receptors are present on cells of normal nonhematopoietic tissues such as endothelium and placenta. We previously demonstrated functional human granulocyte-macrophage colony- stimulating factor (GM-CSF) receptors on small cell carcinoma of the lung cell lines, and others have reported that certain solid tumor cell lines respond to GM-CSF in clonogenic assays. In the current study, we examine human melanoma cell lines and fresh specimens of melanoma to determine whether they have functional GM-CSF receptors. Scatchard analyses of 125I-GM-CSF equilibrium binding to melanoma cell lines showed a mean of 542 +/- 67 sites per cell with a kd of 0.72 +/- 0.14 nmol/L. Cross-linking studies in the melanoma cell line, M14, showed a major GM-CSF receptor species of 84,000 daltons. Under the conditions tested, the M14 cells did not have a proliferative response to GM-CSF in vitro, nor was any induction of primary response genes detected by Northern analysis in response to GM-CSF. Studies to determine internal translocation of the receptor-ligand complex indicated less than 10% of the 125I-GM-CSF internalized was specifically bound to receptors. Primary melanoma cells from five surgical specimens had GM-CSF receptors; Scatchard analysis was performed on one sample, showing 555 sites/cell with a kd of 0.23 nmol/L. These results indicate that human tumor cells may express a low-affinity GM-CSF receptor protein that localizes to the cell surface and binds ligand, but lacks functional components or accessory factors needed to transduce a signal.


Sign in / Sign up

Export Citation Format

Share Document