scholarly journals Expression of the macrophage-specific colony-stimulating factor in human monocytes treated with granulocyte-macrophage colony-stimulating factor

Blood ◽  
1987 ◽  
Vol 69 (4) ◽  
pp. 1259-1261
Author(s):  
J Horiguchi ◽  
MK Warren ◽  
D Kufe

The macrophage-specific colony-stimulating factor (CSF-1, M-CSF) regulates the survival, growth and differentiation of monocytes. We have recently demonstrated that phorbol ester induces expression of CSF- 1 in human monocytes. These findings suggested that activated monocytes are capable of producing their own lineage-specific CSF. The present studies demonstrate that the granulocyte-macrophage colony-stimulating factor (GM-CSF) also induces CSF-1 transcripts in monocytes. Furthermore, we demonstrate that the detection of CSF-1 RNA in GM-CSF- treated monocytes is associated with synthesis of the CSF-1 gene product. The results thus suggest that GM-CSF may indirectly control specific monocyte functions through the regulation of CSF-1 production. These findings indicate another level of interaction between T cells and monocytes.

Blood ◽  
1987 ◽  
Vol 69 (4) ◽  
pp. 1259-1261 ◽  
Author(s):  
J Horiguchi ◽  
MK Warren ◽  
D Kufe

Abstract The macrophage-specific colony-stimulating factor (CSF-1, M-CSF) regulates the survival, growth and differentiation of monocytes. We have recently demonstrated that phorbol ester induces expression of CSF- 1 in human monocytes. These findings suggested that activated monocytes are capable of producing their own lineage-specific CSF. The present studies demonstrate that the granulocyte-macrophage colony-stimulating factor (GM-CSF) also induces CSF-1 transcripts in monocytes. Furthermore, we demonstrate that the detection of CSF-1 RNA in GM-CSF- treated monocytes is associated with synthesis of the CSF-1 gene product. The results thus suggest that GM-CSF may indirectly control specific monocyte functions through the regulation of CSF-1 production. These findings indicate another level of interaction between T cells and monocytes.


1990 ◽  
Vol 10 (3) ◽  
pp. 1281-1286 ◽  
Author(s):  
R Schreck ◽  
P A Baeuerle

The expression of the gene encoding the granulocyte-macrophage colony-stimulating factor (GM-CSF) is induced upon activation of T cells with phytohemagglutinin and active phorbolester and upon expression of tax1, a transactivating protein of the human T-cell leukemia virus type I. The same agents induce transcription from the interleukin-2 receptor alpha-chain and interleukin-2 genes, depending on promoter elements that bind the inducible transcription factor NF-kappa B (or an NF-kappa B-like factor). We therefore tested the possibility that the GM-CSF gene is also regulated by a cognate motif for the NF-kappa B transcription factor. A recent functional analysis by Miyatake et al. (S. Miyatake, M. Seiki, M. Yoshida, and K. Arai, Mol. Cell. Biol. 8:5581-5587, 1988) described a short promoter region in the GM-CSF gene that conferred strong inducibility by T-cell-activating signals and tax1, but no NF-kappa B-binding motifs were identified. Using electrophoretic mobility shift assays, we showed binding of purified human NF-kappa B and of the NF-kappa B activated in Jurkat T cells to an oligonucleotide comprising the GM-CSF promoter element responsible for mediating responsiveness to T-cell-activating signals and tax1. As shown by a methylation interference analysis and oligonucleotide competition experiments, purified NF-kappa B binds at positions -82 to -91 (GGGAACTACC) of the GM-CSF promoter sequence with an affinity similar to that with which it binds to the biologically functional kappa B motif in the beta interferon promoter (GGGAAATTCC). Two kappa B-like motifs at positions -98 to -108 of the GM-CSF promoter were also recognized but with much lower affinities. Our data provide strong evidence that the expression of the GM-CSF gene following T-cell activation is controlled by binding of the NF-kappa B transcription factor to a high-affinity binding site in the GM-CSF promoter.


2003 ◽  
Vol 60 (5) ◽  
pp. 531-538 ◽  
Author(s):  
Miodrag Colic ◽  
Dusan Jandric ◽  
Zorica Stojic-Vukanic ◽  
Jelena Antic-Stankovic ◽  
Petar Popovic ◽  
...  

Several laboratories have developed culture systems that allow the generation of large numbers of human dendritic cells (DC) from monocytes using granulocyte-macrophage colony stimulating factor (GM-CSF), and interleukin-4 (IL-4). In this work we provided evidence that GM-CSF (100 ng/ml) in combination with a low concentration of IL-4 (5 ng/ml) was efficient in the generation of immature, non-adherent, monocyte-derived DC as the same concentration of GM-CSF, and ten times higher concentration of IL-4 (50 ng/ml). This conclusion was based on the similar phenotype profile of DC such as the expression of CD1a, CD80, CD86, and HLA-DR, down-regulation of CD14, and the absence of CD83, as well as on their similar allostimulatory activity for T cells. A higher number of cells remained adherent in cultures with lower concentrations of IL-4 than in cultures with higher concentrations of the cytokine. However, most of these adherent cells down-regulated CD14 and stimulated the proliferation of alloreactive T cells. In contrast adherent cells cultivated with GM-CSF alone were predominantly macrophages as judged by the expression of CD14 and the inefficiency to stimulate alloreactive T cells. DC generated in the presence of lower concentrations of IL-4 had higher proapoptotic potential for the Jurkat cell line than DC differentiated with higher concentrations of IL-4, suggesting their stronger cytotoxic, anti-tumor effect.


Blood ◽  
1993 ◽  
Vol 81 (11) ◽  
pp. 3130-3137 ◽  
Author(s):  
PK Epling-Burnette ◽  
S Wei ◽  
DK Blanchard ◽  
E Spranzi ◽  
JY Djeu

Abstract Human monocytes express interleukin-2 receptor beta (IL-2R beta) constitutively; however, the function of these receptors has not been fully delineated. We discovered that IL-2R beta directs two biologic activities in human monocytes, the release of granulocyte-macrophage colony-stimulating factor (GM-CSF) and increased susceptibility to lysis by lymphokine-activated killer cells (LAK) cells. Human monocytes were purified from peripheral blood mononuclear cells by plastic adherence and anti-CD2 plus complement lysis. By a 5-hour 51Cr-release assay, monocytes cultured in IL-2 were found to gain increasing susceptibility to LAK cells with time and this effect was dose dependent. Maximal susceptibility was obtained with a 4-day culture in 1,000 U/mL of IL-2. Monocytes were also found to release GM-CSF in response to IL-2 using a CSF-dependent cell line, Mo7e. Because IL-2- induced GM-CSF release coincides with LAK lysis of IL-2-cultured monocytes, we treated monocytes with anti-GM-CSF and anti-IL-2R beta to determine whether GM-CSF release and LAK susceptibility were dependent or independent events. We found that both phenomena were inhibited by either antibody. Therefore, we conclude that IL-2-induced release of GM- CSF is mediated by IL-2R beta, which then acts to modulate the susceptibility of monocytes to lysis by LAK cells.


Blood ◽  
1995 ◽  
Vol 86 (10) ◽  
pp. 3715-3724 ◽  
Author(s):  
MA Rubio ◽  
C Lopez-Rodriguez ◽  
A Nueda ◽  
P Aller ◽  
AL Armesilla ◽  
...  

To analyze the activity of the CD11c promoter during myeloid differentiation without the limitations of transient expression systems, we have stably transfected the myeloid U937 cell line with the pCD11C361-Luc plasmid, in which the expression of the firefly luciferase cDNA is driven by the CD11c promoter region -361/+43, previously shown to confer myeloid specificity to reporter genes. The stable transfectants (U937-C361) retained the ability to differentiate in response to phorbol-ester (PMA), sodium butyrate (SB), granulocyte- macrophage colony-stimulating factor (GM-CSF), and other differentiating agents. U937-C361 differentiation correlated with increased cellular luciferase levels, showing the inducibility of the CD11c promoter during myeloid differentiation and establishing the U937- C361 cells as a suitable system for studying the myeloid differentiation-inducing capacity of cytokines, growth, factors, and other biological response modifiers. Unexpectedly, the inducibility of the CD11c gene promoter showed distinct kinetics and magnitude on the PMA-, SB-, GM-CSF-triggered differentiation. Moreover, SB synergized with either PMA or GM-CSF in enhancing both the CD11c promoter activity and the cell surface expression of p150,95 on differentiating U937 cells. Furthermore, we showed the existence of a c-Myb-binding site at - 85, the importance of the -99/-61 region in the CD11c promoter inducibility during PMA- or SB-triggered differentiation, and the dependency of the GM-CSF and PMA responsiveness of the CD11c promoter on an intact AP-1-binding site located at -60. These results, together with the lack of functional effect of mutations disrupting the Sp1-and Myb-binding sites within the proximal region of the CD11c promoter, indicate that the myeloid differentiation pathways indicated by SB and phorbol esters (or GM-CSF) activate a distinct set of transcription factors and show that the myeloid differentiation-inducibility of the CD11c gene maps to the -99/-53 proximal region of the promoter.


1998 ◽  
Vol 188 (1) ◽  
pp. 133-143 ◽  
Author(s):  
Chiara Zilocchi ◽  
Antonella Stoppacciaro ◽  
Claudia Chiodoni ◽  
Mariella Parenza ◽  
Nadia Terrazzini ◽  
...  

We analyzed the ability of interferon (IFN)-γ knockout mice (GKO) to reject a colon carcinoma transduced with interleukin (IL)-12 genes (C26/IL-12). Although the absence of IFN-γ impaired the early response and reduced the time to tumor onset in GKO mice, the overall tumor take rate was similar to that of BALB/c mice. In GKO mice, C26/IL-12 tumors had a reduced number of infiltrating leukocytes, especially CD8 and natural killer cells. Analysis of the tumor site, draining nodes, and spleens of GKO mice revealed reduced expression of IFN- inducible protein 10 and monokine induced by γ-IFN. Despite these defects, GKO mice that rejected C26/IL-12 tumor, and mice that were primed in vivo with irradiated C26/IL-12 cells, showed the same cytotoxic T lymphocyte activity but higher production of granulocyte/macrophage colony–stimulating factor (GM-CSF) as compared with control BALB/c mice. Treatment with monoclonal antibodies against GM-CSF abrogated tumor regression in GKO but not in BALB/c mice. CD4 T lymphocytes, which proved unnecessary or suppressive during rejection of C26/IL-12 cells in BALB/c mice, were required for tumor rejection in GKO mice. CD4 T cell depletion was coupled with a decline in GM-CSF expression by lymphocytes infiltrating the tumors or in the draining nodes, and with the reduction and disappearance of granulocytes and CD8 T cells, respectively, in tumor nodules. These results suggest that GM-CSF can substitute for IFN-γ in maintaining the CD8–polymorphonuclear leukocyte cross-talk that is a hallmark of tumor rejection.


Blood ◽  
1993 ◽  
Vol 82 (12) ◽  
pp. 3616-3621 ◽  
Author(s):  
JA Hamilton ◽  
GA Whitty ◽  
H Stanton ◽  
J Wojta ◽  
M Gallichio ◽  
...  

Macrophage colony-stimulating factor (M-CSF or CSF-1) and granulocyte- macrophage CSF (GM-CSF) have been shown to increase human monocyte urokinase-type plasminogen-activator (u-PA) activity with possible consequences for cell migration and tissue remodeling; because monocyte u-PA activity is likely to be controlled in part also by the PA inhibitors (PAIs) made by the cell, the effect of M-CSF and GM-CSF on human monocyte PAI-2 and PAI-1 synthesis was investigated. To this end, elutriation-purified human monocytes were treated in vitro with purified recombinant human M-CSF and GM-CSF, and PAI-2 and PAI-1 antigen and mRNA levels measured by specific enzyme-linked immunosorbent assays and Northern blot, respectively. Each CSF could enhance the protein and mRNA levels of PAI-2 and PAI-1 at similar concentrations for each product. This similar regulation of monocyte PAI expression in response to the CSFs contrasted with that found for the effects of lipopolysaccharide, transforming growth factor-beta and a glucocorticoid. Therefore, PAIs may be modulating the effects of the CSFs on monocyte u-PA activity at sites of inflammation and tissue remodeling.


Blood ◽  
1994 ◽  
Vol 83 (3) ◽  
pp. 713-723
Author(s):  
AM Stewart-Akers ◽  
JS Cairns ◽  
DJ Tweardy ◽  
SA McCarthy

The effects of granulocyte-macrophage colony-stimulating factor (GM- CSF) are not confined to cells of the myeloid lineage. GM-CSF has been shown to have effects on mature T cells and both mature and immature T- cell lines. We therefore examined the GM-CSF responsiveness of murine thymocytes to investigate whether GM-CSF also affected normal immature T lymphocytes. The studies presented here indicate that GM-CSF augments accessory cell (AC)-dependent T-cell receptor (TCR)-mediated proliferation of unseparated thymocyte populations. To identify the GM- CSF responsive cell type, thymic AC and T cells were examined for GM- CSF responsiveness. We found that GM-CSF augmentation of TCR-induced thymocyte proliferation appears to be mediated via augmentation of AC function, and not via direct effects on mature single-positive (SP) thymocytes. Enriched double-negative (DN) thymocytes were also tested for GM-CSF responsiveness. GM-CSF induced the proliferation of adult and fetal DN thymocytes in an AC-independent and TCR-independent single- cell assay. Thus, in contrast to the SP thymocytes, a DN thymocyte population was directly responsive to GM-CSF. GM-CSF therefore may play a direct role in the expansion of DN thymocytes and an indirect role in the expansion of SP thymocytes.


Sign in / Sign up

Export Citation Format

Share Document