scholarly journals Blood mononuclear cells from patients with severe congenital neutropenia are capable of producing granulocyte colony-stimulating factor

Blood ◽  
1991 ◽  
Vol 77 (6) ◽  
pp. 1234-1237 ◽  
Author(s):  
T Pietsch ◽  
C Buhrer ◽  
K Mempel ◽  
T Menzel ◽  
U Steffens ◽  
...  

Abstract Severe congenital neutropenia (SCN) is a disorder of myelopoiesis characterized by severe neutropenia or absence of blood neutrophils secondary to a maturational arrest at the level of promyelocytes. We examined peripheral blood mononuclear cells (PBMC) of SCN patients who demonstrated normalization of their blood neutrophil counts in a phase II clinical study with recombinant human granulocyte colony-stimulating factor (rhG-CSF). When stimulated in vitro with bacterial lipopolysaccharides (LPS), PBMC of those SCN patients produced G-CSF activity, as judged by proliferation induction of the murine leukemia cell line, NFS-60. Western and Northern blot analysis showed G-CSF protein and G-CSF-mRNA indistinguishable in size from those of normal controls. We conclude that PBMC of the SCN patients tested are capable of synthesizing and secreting biologically active G-CSF in vitro.

Blood ◽  
1991 ◽  
Vol 77 (6) ◽  
pp. 1234-1237 ◽  
Author(s):  
T Pietsch ◽  
C Buhrer ◽  
K Mempel ◽  
T Menzel ◽  
U Steffens ◽  
...  

Severe congenital neutropenia (SCN) is a disorder of myelopoiesis characterized by severe neutropenia or absence of blood neutrophils secondary to a maturational arrest at the level of promyelocytes. We examined peripheral blood mononuclear cells (PBMC) of SCN patients who demonstrated normalization of their blood neutrophil counts in a phase II clinical study with recombinant human granulocyte colony-stimulating factor (rhG-CSF). When stimulated in vitro with bacterial lipopolysaccharides (LPS), PBMC of those SCN patients produced G-CSF activity, as judged by proliferation induction of the murine leukemia cell line, NFS-60. Western and Northern blot analysis showed G-CSF protein and G-CSF-mRNA indistinguishable in size from those of normal controls. We conclude that PBMC of the SCN patients tested are capable of synthesizing and secreting biologically active G-CSF in vitro.


Blood ◽  
1993 ◽  
Vol 82 (10) ◽  
pp. 2991-2997 ◽  
Author(s):  
K Hestdal ◽  
K Welte ◽  
SO Lie ◽  
JR Keller ◽  
FW Ruscetti ◽  
...  

Abstract Several mechanisms have been proposed to explain the pathogenesis of severe congenital neutropenia (SCN); however, the mechanism(s) still remains unknown. In particular, clinical observations suggest that abnormal responsiveness of myeloid progenitors to hematopoietic growth factors (HGFs) is a possible mechanism. Therefore, to better define the status of hematopoietic progenitors in the bone marrow (BM) of patients with SCN, the responsiveness of myeloid progenitors to HGFs from two SCN patients was compared with the responsiveness of progenitors from healthy individuals. BM cells (BMCs) from the first SCN patient required higher (10- to 100-fold) concentrations of granulocyte colony- stimulating factor (G-CSF) to achieve maximal and half-maximal colony growth in vitro compared with BMCs from controls. In contrast, the dose- response of interleukin-3 (IL-3) and granulocyte-macrophage-CSF (GM- CSF) in colony formation was normal. Interestingly, IL-3, GM-CSF, and G- CSF at optimal doses showed reduced ability to induce neutrophil differentiation of BMCs from a SCN patient compared with BMCs from controls. Despite an abnormal responsiveness of mature myeloid progenitors to G-CSF in this SCN patient, myeloid progenitors responsive to the combination of stem cell factor (SCF) and G-CSF showed normal dose-response. In contrast to G-CSF alone, the combination of G-CSF and SCF induced the formation of neutrophils almost to the same extent compared with cultures of normal BMCs. Furthermore, also on BM progenitor cells obtained from the second patient with SCN, SCF highly synergized with G-CSF to promote neutrophil progenitor cell growth and differentiation in vitro. Thus, these results indicate that one mechanism of the pathogenesis in SCN patients is reduced responsiveness of neutrophil progenitor cells to G- CSF and that SCF can enhance the responsiveness of these cells to G-CSF.


Blood ◽  
1993 ◽  
Vol 82 (10) ◽  
pp. 2991-2997 ◽  
Author(s):  
K Hestdal ◽  
K Welte ◽  
SO Lie ◽  
JR Keller ◽  
FW Ruscetti ◽  
...  

Several mechanisms have been proposed to explain the pathogenesis of severe congenital neutropenia (SCN); however, the mechanism(s) still remains unknown. In particular, clinical observations suggest that abnormal responsiveness of myeloid progenitors to hematopoietic growth factors (HGFs) is a possible mechanism. Therefore, to better define the status of hematopoietic progenitors in the bone marrow (BM) of patients with SCN, the responsiveness of myeloid progenitors to HGFs from two SCN patients was compared with the responsiveness of progenitors from healthy individuals. BM cells (BMCs) from the first SCN patient required higher (10- to 100-fold) concentrations of granulocyte colony- stimulating factor (G-CSF) to achieve maximal and half-maximal colony growth in vitro compared with BMCs from controls. In contrast, the dose- response of interleukin-3 (IL-3) and granulocyte-macrophage-CSF (GM- CSF) in colony formation was normal. Interestingly, IL-3, GM-CSF, and G- CSF at optimal doses showed reduced ability to induce neutrophil differentiation of BMCs from a SCN patient compared with BMCs from controls. Despite an abnormal responsiveness of mature myeloid progenitors to G-CSF in this SCN patient, myeloid progenitors responsive to the combination of stem cell factor (SCF) and G-CSF showed normal dose-response. In contrast to G-CSF alone, the combination of G-CSF and SCF induced the formation of neutrophils almost to the same extent compared with cultures of normal BMCs. Furthermore, also on BM progenitor cells obtained from the second patient with SCN, SCF highly synergized with G-CSF to promote neutrophil progenitor cell growth and differentiation in vitro. Thus, these results indicate that one mechanism of the pathogenesis in SCN patients is reduced responsiveness of neutrophil progenitor cells to G- CSF and that SCF can enhance the responsiveness of these cells to G-CSF.


Blood ◽  
1996 ◽  
Vol 87 (2) ◽  
pp. 574-580 ◽  
Author(s):  
M Mielcarek ◽  
BA Roecklein ◽  
B Torok-Storb

The ability of granulocyte colony-stimulating factor (G-CSF)-mobilized peripheral blood mononuclear cells (G-PBMCs) to induce secretion of cytokines in primary long-term marrow cultures (LTC) or in the human marrow stromal cell line HS23 was compared with that of marrow mononuclear cells. Equal numbers of G-PBMCs or marrow mononuclear cells were added to stromal cultures, supernatants were harvested at day 4 and levels of interleukin-1 alpha (IL-1 alpha), IL-1 beta, IL-2, IL-6, G-CSF, and tumor necrosis factor alpha (TNF alpha) were determined. G- PBMCs induced 21.4-fold higher levels of IL-6 and 12.5-fold higher levels of G-CSF in LTC cocultures compared with marrow mononuclear cells and induced 20.6-fold more IL-6 and 6.3-fold more G-CSF when added to HS23 cells. Experiments using sorted populations of CD20+, CD3+, and CD14+ cells showed that CD14+ cells within G-PBMCs were responsible for triggering the production of IL-6 and G-CSF. The effect did not require cell-cell contact and was inhibited when neutralizing antibodies to IL-1 alpha and IL-1 beta were used in combination. In these experiments, the greater stimulating ability of G-PBMCs is most likely attributable to the greater number of CD14+ cells in G-PBMCs (26.1+% +/- 2.3%) compared with marrow (2.5% +/- 0.8%), because equal numbers of CD14+ cells sorted from marrow and G-PBMCs showed comparable ability to induce IL-6 and G-CSF when placed directly on stromal cells.


Blood ◽  
1993 ◽  
Vol 82 (7) ◽  
pp. 1981-1984 ◽  
Author(s):  
CH Weaver ◽  
CD Buckner ◽  
K Longin ◽  
FR Appelbaum ◽  
S Rowley ◽  
...  

Abstract Five syngeneic transplants were performed in four patients following myeloablative therapy using unmodified peripheral blood mononuclear cells (PBMCs) collected after the administration of recombinant human granulocyte colony stimulating factor (rhG-CSF) to normal donors. The only toxicity experienced by the four normal donors was bone pain. Four patients received two collections of PBMCs, and a second transplant was performed in one patient with one collection. The patients received a median of 20.53 x 10(8) total nucleated cells/kg (range 20 to 25.5), 11.3 x 10(8) total mononuclear cells/kg (range 6.52 to 17.2), 113.1 x 10(4)/kg CFU-GM (range 46.7 to 211.8) and 9.6 x 10(6) CD34+ cells/kg (range 1.6 to 12.6) Post-transplant growth factors were not administered. The median time to an absolute neutrophil count greater than 0.5 x 10(9)/L was 14 days (range 10 to 18). The median time to platelet transfusion independence was 11 days (range 10 to 13). Two patients had the number of CD3+ T lymphocytes determined in the pheresis product. An average of 3.04 x 10(10) CD3+ cells were collected per pheresis. This represents an approximate 1 log increase over the number of T lymphocytes in a typical bone marrow transplant. Rh-GCSF can be used to mobilize peripheral blood progenitor cells from normal donors with minimal toxicity. Studies of allogeneic transplants using PBMCs collected after rhG-CSF administration to determine permanent grafting ability and the incidence and severity of graft-versus-host disease are warranted.


Blood ◽  
1998 ◽  
Vol 91 (1) ◽  
pp. 347-352 ◽  
Author(s):  
Junji Tanaka ◽  
Marco Mielcarek ◽  
Beverly Torok-Storb

Abstract Use of the CD28/B7 costimulatory signal for T-cell activation was analyzed in granulocyte colony-stimulating factor (G-CSF) mobilized peripheral blood mononuclear cells (G-PBMCs) and in peripheral blood mononuclear cells obtained before administration of G-CSF (preG-PBMCs). CTLA4Ig inhibition of OKT3-stimulated proliferation was significantly lower in G-PBMCs compared with preG-PBMCs (39.9% ± 5.6% and 72.2% ± 5.4%, respectively; P < .001). Furthermore, as shown in electrophoretic mobility-shift assays, the inducible level of the T-cell transcription factor CD28 responsive complex (CD28RC) was suppressed in CD4 cells derived from G-PBMC. However, depletion of CD14 cells from G-PBMCs restored CD28RC induction to normal levels. Taken together, these findings suggest that the large number of CD14 monocytes in G-PBMCs may limit T-cell responsiveness by suppressing the induction of the CD28RC.


Sign in / Sign up

Export Citation Format

Share Document