scholarly journals In vivo administration of granulocyte colony-stimulating factor (G- CSF), granulocyte-macrophage CSF, interleukin-1 (IL-1), and IL-4, alone and in combination, after allogeneic murine hematopoietic stem cell transplantation

Blood ◽  
1991 ◽  
Vol 77 (6) ◽  
pp. 1376-1382
Author(s):  
K Atkinson ◽  
C Matias ◽  
A Guiffre ◽  
R Seymour ◽  
M Cooley ◽  
...  

BALB/c mice (H-2d) given 10 Gy total body irradiation (TBI) followed by 10(7) bone marrow (BM) and 10(6) spleen cells from C57BL/6 (H-2b) donor mice received recombinant cytokines intraperitoneally (IP) twice daily. The effect on neutrophil recovery rate, graft-v-host disease (GVHD), and survival was assessed. Four reagents were used: granulocyte-colony- stimulating factor (G-CSF), granulocyte-macrophage CSF (GM-CSF), interleukin-1 (IL-1) and IL-4, both alone and in combination. The most effective combination for increasing the circulating absolute neutrophil account (ANC) above the control value at day 7 posttransplant was the combination of G-CSF and IL-1 (mean ANC 2.4 +/- 1.6 x 10(9)/L as compared with control value of 0.07 +/- 0.05, P less than .02), followed by G-CSF alone (mean ANC 1.1 +/- 0.2, P less than .0001), the combination of GM-CSF plus IL-1 (mean ANC 0.8 +/- 0.3, P less than .002), and the combination of G-CSF plus GM-CSF (mean ANC 0.8 +/- 0.3, p less than .005). At day 10 posttransplant, the most effective combination in raising the ANC was the combination of G-CSF plus GM-CSF (mean ANC 7.5 +/- 2.3 as compared with control value of 3.5 +/- 1.1, P less than .01), followed by G-CSF alone (mean ANC 6.9 +/- 2.1, P less than .02). At the doses used, neither G-CSF nor GM-CSF had a deleterious effect on the incidence or severity of GVHD; indeed, GM- CSF was associated with improved survival. In contrast, IL-1 at doses greater than or equal to 100 ng twice daily caused marked early mortality, and there was a suggestion that IL-4 at doses of 500 ng twice daily resulted in increased late mortality, possibly owing to exacerbation of GVHD. This model appears to be of value for exploring the use of hematopoietic growth factors before they are used clinically in marrow allograft recipients.

Blood ◽  
1991 ◽  
Vol 77 (6) ◽  
pp. 1376-1382 ◽  
Author(s):  
K Atkinson ◽  
C Matias ◽  
A Guiffre ◽  
R Seymour ◽  
M Cooley ◽  
...  

Abstract BALB/c mice (H-2d) given 10 Gy total body irradiation (TBI) followed by 10(7) bone marrow (BM) and 10(6) spleen cells from C57BL/6 (H-2b) donor mice received recombinant cytokines intraperitoneally (IP) twice daily. The effect on neutrophil recovery rate, graft-v-host disease (GVHD), and survival was assessed. Four reagents were used: granulocyte-colony- stimulating factor (G-CSF), granulocyte-macrophage CSF (GM-CSF), interleukin-1 (IL-1) and IL-4, both alone and in combination. The most effective combination for increasing the circulating absolute neutrophil account (ANC) above the control value at day 7 posttransplant was the combination of G-CSF and IL-1 (mean ANC 2.4 +/- 1.6 x 10(9)/L as compared with control value of 0.07 +/- 0.05, P less than .02), followed by G-CSF alone (mean ANC 1.1 +/- 0.2, P less than .0001), the combination of GM-CSF plus IL-1 (mean ANC 0.8 +/- 0.3, P less than .002), and the combination of G-CSF plus GM-CSF (mean ANC 0.8 +/- 0.3, p less than .005). At day 10 posttransplant, the most effective combination in raising the ANC was the combination of G-CSF plus GM-CSF (mean ANC 7.5 +/- 2.3 as compared with control value of 3.5 +/- 1.1, P less than .01), followed by G-CSF alone (mean ANC 6.9 +/- 2.1, P less than .02). At the doses used, neither G-CSF nor GM-CSF had a deleterious effect on the incidence or severity of GVHD; indeed, GM- CSF was associated with improved survival. In contrast, IL-1 at doses greater than or equal to 100 ng twice daily caused marked early mortality, and there was a suggestion that IL-4 at doses of 500 ng twice daily resulted in increased late mortality, possibly owing to exacerbation of GVHD. This model appears to be of value for exploring the use of hematopoietic growth factors before they are used clinically in marrow allograft recipients.


2015 ◽  
Vol 88 (4) ◽  
pp. 468-472 ◽  
Author(s):  
Sînziana Cetean ◽  
Călin Căinap ◽  
Anne-Marie Constantin ◽  
Simona Căinap ◽  
Alexandra Gherman ◽  
...  

Granulocyte-colony stimulating factor (G-CSF) is a glycoprotein, the second CSF, sharing some common effects with granulocyte macrophage-colony stimulating factor (GM-CSF), interleukin-3 (IL-3) and interleukin-5 (IL-5). G-CSF is mainly produced by fibroblasts and endothelial cells from bone marrow stroma and by immunocompetent cells (monocytes, macrophages). The receptor for G-CSF (G-CSFR) is part of the cytokine and hematopoietin receptor superfamily and G-CSFR mutations cause severe congenital neutropenia.The main action of G-CSF - G-CSFR linkage is stimulation of the production, mobilization, survival and chemotaxis of neutrophils, but there are many other G-CSF effects: growth and migration of endothelial cells, decrease of norepinephrine reuptake, increase in osteoclastic activity and decrease in osteoblast activity.In oncology, G-CSF is utilized especially for the primary prophylaxis of chemotherapy-induced neutropenia, but it can be used for hematopoietic stem cell transplantation, it can produce monocytic differentiation of some myeloid leukemias and it can increase some drug resistance.The therapeutic indications of G-CSF are becoming more and more numerous: non neutropenic patients infections, reproductive medicine, neurological disturbances, regeneration therapy after acute myocardial infarction and of skeletal muscle, and hepatitis C therapy.


Blood ◽  
1990 ◽  
Vol 75 (10) ◽  
pp. 1951-1959 ◽  
Author(s):  
AR Migliaccio ◽  
G Migliaccio ◽  
DC Dale ◽  
WP Hammond

Abstract The number and growth factor requirements of committed progenitor cells (colony-forming units-granulocyte/macrophage and burst-forming units- erythroid) in three patients with cyclic neutropenia (two congenital, one acquired) were studied before and during therapy with recombinant human granulocyte colony-stimulating factor (G-CSF; 3 to 10 micrograms/kg/d). When the patients with congenital disease were treated with G-CSF, the cycling of blood cells persisted, but the cycle length was shortened from 21 days to 14 days, and the amplitude of variations in blood counts increased. There was a parallel shortening of the cycle and increase of the amplitude of variations (from two- to three-fold to 10- to 100-fold) in the number of both types of circulating progenitor cells in these two patients. In the patient with acquired cyclic neutropenia, cycling of both blood cells and progenitors could not be seen. In cultures deprived of fetal bovine serum, erythroid and myeloid bone marrow progenitor cells from untreated patients and from normals differed in growth factor responsiveness. As examples, maximal growth of granulocyte/macrophage (GM) colonies was induced by granulocyte/macrophage (GM)-CSF plus G-CSF in the patients, whereas a combination of GM-CSF, G-CSF and interleukin- 3 (IL-3) was required in the normals, and erythropoietin alone induced fourfold more erythroid bursts from cyclic neutropenic patients than from normal donors (46% versus 11% of the maximal colony number, respectively). The growth factor responsiveness of marrow progenitor cells slightly changed during the treatment toward the values observed with normal progenitors. These results indicate that treatment with G- CSF not only ameliorated the neutropenia, but also increased the amplitude and the frequency of oscillation of circulating progenitor cell numbers. These data are consistent with the hypothesis that G-CSF therapy affects the proliferation of the hematopoietic stem cell.


Blood ◽  
1988 ◽  
Vol 71 (4) ◽  
pp. 962-968 ◽  
Author(s):  
KM Zsebo ◽  
J Wypych ◽  
VN Yuschenkoff ◽  
H Lu ◽  
P Hunt ◽  
...  

Abstract Hematopoietin-1 (H-1) was purified from the human cell line 5637 and two amino acid sequences were observed in the preparation. One sequence was identical to that of interleukin 1 alpha (IL 1 alpha) and the other to that of IL 1 beta. The action of recombinant IL 1 alpha and other hematopoietic growth factors was studied using (a) a high proliferative potential colony-forming cell assay that uses primitive hematopoietic precursors from bone marrow, and (b) a spleen colony-forming unit assay. The results indicate that the IL 1 alpha target cell population is different than the target cell populations of IL 3, granulocyte- macrophage colony-stimulating factor; that IL 1 alpha in combination with mononuclear phagocyte colony-stimulating factor provides a proliferative stimulus; and that IL 1 alpha has at least a survival- enhancing and possibly proliferation-inducing effect on primitive hematopoietic stem cells.


Blood ◽  
1992 ◽  
Vol 80 (3) ◽  
pp. 609-616 ◽  
Author(s):  
GM Segal ◽  
TD Smith ◽  
MC Heinrich ◽  
FS Ey ◽  
GC Bagby

Abstract Antisense oligodeoxynucleotides (ODNs) have been used to effect the specific inhibition of cellular gene expression. We have evaluated the application of this approach to the inhibition of interleukin-1 (IL-1)- induced granulocyte-macrophage colony-stimulating factor (GM-CSF) and granulocyte colony-stimulating factor (G-CSF) expression in cultured human umbilical vein endothelial cells. Antisense ODNs or control ODNs (sense ODNs or missense ODNs containing random base substitutions) were added to cultures of endothelial cells, the cells were induced with IL- 1 alpha, and the conditioned media were assayed for GM-CSF and G-CSF by quantitative bioassays and for immunoreactive GM-CSF by enzyme immunoassay. Antisense ODNs complementary to the first 15 or 18 bases of the translation start sites of GM-CSF or G-CSF mRNAs inhibited, in a concentration-dependent fashion, the IL-1-stimulated expression of the corresponding factor, but did not affect expression of the other factor. Control ODNs did not affect GM-CSF or G-CSF expression. Exposure to a GM-CSF antisense ODN, but not a control ODN, substantially reduced cytoplasmic GM-CSF mRNA levels in IL-1-stimulated endothelial cells. Neither ODN affected levels of endothelial leukocyte adhesion molecule (ELAM)1 or glyceraldehyde-3-phosphate dehydrogenase mRNAs. We conclude that antisense ODNs complementary to the translation start sites of GM-CSF or G-CSF mRNAs inhibit expression of the corresponding factor in a sequence-specific fashion and this effect is mediated, at least in part, by reduction in the cytoplasmic level of the targeted mRNA. Moreover, IL-1-induced GM-CSF or G-CSF expression does not depend on expression of the other factor.


Sign in / Sign up

Export Citation Format

Share Document