scholarly journals Endothelium-derived relaxing factor inhibits thrombin-induced platelet aggregation by inhibiting platelet phospholipase C

Blood ◽  
1992 ◽  
Vol 79 (1) ◽  
pp. 110-116
Author(s):  
W Durante ◽  
MH Kroll ◽  
PM Vanhoutte ◽  
AI Schafer

Endothelium-derived relaxing factor (EDRF) inhibits platelet function, but the mechanism underlying this inhibitory effect is not known. To examine this, cultured acetylsalicylic acid (ASA)-treated endothelial cells (EC) from bovine aorta (BAEC) or from human umbilical vein (HUVEC) were incubated with washed, ASA-treated human platelets. Incubation of platelets with either BAEC or HUVEC resulted in inhibition of thrombin-induced platelet aggregation that was dependent on the number of EC added. This effect was potentiated by superoxide dismutase and reversed by treating EC with NG-nitro-L-arginine or by treating platelets with methylene blue, indicating that the inhibition of platelet aggregation was due to the release of EDRF by EC. EC significantly blocked the thrombin stimulated breakdown of phosphatidylinositol-4,5-bisphosphate (PIP2) and the production of phosphatidic acid in [32P]orthophosphate-labeled platelets and of inositol trisphosphate in [3H]myoinositol-labeled platelets. In addition, the thrombin-mediated activation of protein kinase C (PKC) and phosphorylation of myosin light chain were inhibited in the presence of EC. Finally, thrombin stimulated an increase in cytosolic ionized calcium concentration ([Ca2+]i) in fura2-loaded platelets that was abolished by concentrations of EC which also blocked thrombin- induced aggregation. These data indicate that EDRF blocks thrombin- induced platelet aggregation by inhibiting the activation of PIP2- specific phospholipase C and thereby suppressing the consequent activation of PKC and the mobilization of [Ca2+]i.

Blood ◽  
1992 ◽  
Vol 79 (1) ◽  
pp. 110-116 ◽  
Author(s):  
W Durante ◽  
MH Kroll ◽  
PM Vanhoutte ◽  
AI Schafer

Abstract Endothelium-derived relaxing factor (EDRF) inhibits platelet function, but the mechanism underlying this inhibitory effect is not known. To examine this, cultured acetylsalicylic acid (ASA)-treated endothelial cells (EC) from bovine aorta (BAEC) or from human umbilical vein (HUVEC) were incubated with washed, ASA-treated human platelets. Incubation of platelets with either BAEC or HUVEC resulted in inhibition of thrombin-induced platelet aggregation that was dependent on the number of EC added. This effect was potentiated by superoxide dismutase and reversed by treating EC with NG-nitro-L-arginine or by treating platelets with methylene blue, indicating that the inhibition of platelet aggregation was due to the release of EDRF by EC. EC significantly blocked the thrombin stimulated breakdown of phosphatidylinositol-4,5-bisphosphate (PIP2) and the production of phosphatidic acid in [32P]orthophosphate-labeled platelets and of inositol trisphosphate in [3H]myoinositol-labeled platelets. In addition, the thrombin-mediated activation of protein kinase C (PKC) and phosphorylation of myosin light chain were inhibited in the presence of EC. Finally, thrombin stimulated an increase in cytosolic ionized calcium concentration ([Ca2+]i) in fura2-loaded platelets that was abolished by concentrations of EC which also blocked thrombin- induced aggregation. These data indicate that EDRF blocks thrombin- induced platelet aggregation by inhibiting the activation of PIP2- specific phospholipase C and thereby suppressing the consequent activation of PKC and the mobilization of [Ca2+]i.


1982 ◽  
Vol 48 (01) ◽  
pp. 078-083 ◽  
Author(s):  
C Ts'ao ◽  
S J Hart ◽  
D V Krajewski ◽  
P G Sorensen

SummaryEarlier, we found that ε-aminocaproic acid (EACA) inhibited human platelet aggregation induced by adenosine diphosphate (ADP) and collagen, but not aggregation by arachidonic acid (AA). Since EACA is structurally similar to lysine, yet these two agents exhibit vast difference in their antifibrinolytic activities, we chose to study the effect of lysine on platelet aggregation. We used L-lysine-HCl in these studies because of its high solubility in aqueous solutions while causing no change in pH when added to human plasma. With lysine, we repeatedly found inhibition of ADP-, collagen- and ristocetin-induced aggregation, but potentiation of AA-induced aggregation. Both the inhibitory and potentiation effects were dose-dependent. Low doses of lysine inhibited the secondary phase of aggregation; high doses of it also inhibited the primary phase of aggregation. Potentiation of AA-induced aggregation was accompanied by increased release of serotonin and formation of malondialdehyde. These effects were not confined to human platelets; rat platelets were similarly affected. Platelets, exposed to lysine and then washed and resuspended in an artificial medium not containing lysine, remained hypersensitive to AA, but no longer showed decreased aggregation by collagen. Comparing the effects of lysine with equimolar concentrations of sucrose, EACA, and α-amino-n-butyric acid, we attribute the potent inhibitory effect of lysine to either the excess positive charge or H+ and C1− ions. The -NH2 group on the α-carbon on lysine appears to be the determining factor for the potentiation effect; the effect seems to be exerted on the cyclooxygenase level of AA metabolism. Lysine and other chemicals with platelet-affecting properties similar to lysine may be used as a tool for the study of the many aspects of a platelet aggregation reaction.


TH Open ◽  
2017 ◽  
Vol 01 (02) ◽  
pp. e122-e129
Author(s):  
Hitoshi Kashiwagi ◽  
Koh-ichi Yuhki ◽  
Yoshitaka Imamichi ◽  
Fumiaki Kojima ◽  
Shima Kumei ◽  
...  

AbstractThe results of studies that were performed to determine whether cigarette smoking affects platelet function have been controversial, and the effects of nicotine- and tar-free cigarette smoke extract (CSE) on platelet function remain to be determined. The aim of this study was to determine the effect of CSE on platelet aggregation and to clarify the mechanism by which CSE affects platelet function. CSE inhibited murine platelet aggregation induced by 9,11-dideoxy-9α,11α-methanoepoxy-prosta-5Z,13E-dien-1-oic acid (U-46619), a thromboxane (TX) A2 receptor agonist, and that induced by collagen with respective IC50 values of 1.05 ± 0.14% and 1.34 ± 0.19%. A similar inhibitory action of CSE was also observed in human platelets. CSE inhibited arachidonic acid–induced TXA2 production in murine platelets with an IC50 value of 7.32 ± 2.00%. Accordingly, the inhibitory effect of CSE on collagen-induced aggregation was significantly blunted in platelets lacking the TXA2 receptor compared with the inhibitory effect in control platelets. In contrast, the antiplatelet effects of CSE in platelets lacking each inhibitory prostanoid receptor, prostaglandin (PG) I2 receptor and PGE2 receptor subtypes EP2 and EP4, were not significantly different from the effects in respective control platelets. Among the enzymes responsible for TXA2 production in platelets, the activity of cyclooxygenase (COX)-1 was inhibited by CSE with an IC50 value of 1.07 ± 0.15% in an uncompetitive manner. In contrast, the activity of TX synthase was enhanced by CSE. The results indicate that CSE inhibits COX-1 activity and thereby decreases TXA2 production in platelets, leading to inhibition of platelet aggregation.


Blood ◽  
1993 ◽  
Vol 82 (9) ◽  
pp. 2704-2713 ◽  
Author(s):  
R Vezza ◽  
R Roberti ◽  
GG Nenci ◽  
P Gresele

Abstract Prostaglandin E2 (PGE2) is produced by activated platelets and by several other cells, including capillary endothelial cells. PGE2 exerts a dual effect on platelet aggregation: inhibitory, at high, supraphysiologic concentrations, and potentiating, at low concentrations. No information exists on the biochemical mechanisms through which PGE2 exerts its proaggregatory effect on human platelets. We have evaluated the activity of PGE2 on human platelets and have analyzed the second messenger pathways involved. PGE2 (5 to 500 nmol/L) significantly enhanced aggregation induced by subthreshold concentrations of U46619, thrombin, adenosine diphosphate (ADP), and phorbol 12-myristate 13-acetate (PMA) without simultaneously increasing calcium transients. At a high concentration (50 mumol/L), PGE2 inhibited both aggregation and calcium movements. PGE2 (5 to 500 nmol/L) significantly enhanced secretion of beta-thromboglobulin (beta TG) and adenosine triphosphate from U46619- and ADP-stimulated platelets, but it did not affect platelet shape change. PGE2 also increased the binding of radiolabeled fibrinogen to the platelet surface and increased the phosphorylation of the 47-kD protein in 32P- labeled platelets stimulated with subthreshold doses of U46619. Finally, the amplification of U46619-induced aggregation by PGE2 (500 nmol/L) was abolished by four different protein kinase C (PKC) inhibitors (calphostin C, staurosporine, H7, and TMB8). Our results suggest that PGE2 exerts its facilitating activity on agonist-induced platelet activation by priming PKC to activation by other agonists. PGE2 potentiates platelet activation at concentrations produced by activated platelets and may thus be of pathophysiologic relevance.


Blood ◽  
1990 ◽  
Vol 76 (5) ◽  
pp. 953-958 ◽  
Author(s):  
DS Houston ◽  
P Robinson ◽  
JM Gerrard

Abstract Studies were performed to determine whether endothelium-derived relaxing factor (EDRF) can inhibit platelet aggregation within the vascular lumen, and if so, whether the inhibition persists in the presence of red blood cells (RBCs). Canine femoral arteries mounted in an organ bath were perfused with physiologic saline solution to which acetylsalicylic acid was added to block prostacyclin formation. During contraction with phenylephrine, addition of acetylcholine to the perfusing solution to evoke EDRF release relaxed the vessel wall. Washed human platelets labeled with 14C-5-hydroxytryptamine were added to the perfusing solution, and activated by thrombin infused via a branch vessel. The perfusate was collected downstream and centrifuged; the fraction of 14C-5-hydroxytryptamine appearing in the supernatant reflected the degree of platelet activation. Stimulation of EDRF release with acetylcholine inhibited 14C-5-hydroxytryptamine release. Hemoglobin (Hb) (10(-5) mol/L) blocked vascular relaxation and platelet- inhibition. RBCs at a hematocrit of 10% (treated with echothiophate to block erythrocyte cholinesterase) did not prevent relaxation but reversed the platelet inhibition. Lower hematocrits did not completely block the inhibition. Thus, erythrocyte Hb may modulate the inhibition of intraluminal platelet aggregation by EDRF.


1990 ◽  
Vol 266 (2) ◽  
pp. 527-535 ◽  
Author(s):  
R C Carroll ◽  
R E Worthington ◽  
C Boucheix

The CD9 molecule is a 24 kDa surface-membrane glycoprotein present on platelets and a variety of haematopoetic and non-haematopoetic tissues. In the present study we utilized specific inhibitors of thromboxane A2 (TxA2) formation (aspirin), protein kinase C [H-7 [1-(5-isoquinolinesulphonyl)-2-methylpiperazine]] and autocrine stimulation by secreted ADP (apyrase) to modify platelet activation by a monoclonal antibody ALB-6 to the CD9 antigen. This activation is only partially inhibited by aspirin alone but, in combination with either H-7 or apyrase, more than 50% inhibition of platelet aggregation and secretion was observed. This combination of inhibitors was also required to inhibit effectively the phosphorylation of myosin light chain and the 47 kDa substrate of protein kinase C. Intracellular Ca2+ flux monitored by the fluorescent dye fura-2 showed that this was almost completely mediated by the aspirin-sensitive TxA2 pathway. We suggest that the aspirin-insensitive pathway is primarily mediated by phospholipase C formation of diacylglycerol to activate protein kinase C. The inhibition by apyrase suggests a strong dependency on autocrine stimulation by secreted ADP to fully activate both phospholipase C and express fibrinogen-binding sites mediating platelet aggregation. This alternate pathway of phospholipase C activation by ALB-6 may be mediated by cytoplasmic alkalinization [monitored by SNARF-1 (5′(6′)-carboxy-10-bismethylamino-3-hydroxy-spiro-[7H- benzo[c]xanthine-1′,7(3H)-isobenzofuran]-3′-one) fluorescence of the dye]. Both activation pathways are dependent on intact antibodies, since F(ab′)2 fragments of SYB-1, a monoclonal antibody against the CD9 antigen with activation characteristics identical with those of ALB-6, do not elicit activation. Besides thrombin, collagen is another physiological agonist shown to induce aspirin-insensitive activation. Similarities to ALB-6 in collagen sensitivity to apyrase in combination with aspirin inhibitors were noted with respect to aggregation and secretion, as well as a complete block of Ca2+ flux by aspirin. However, it is unlikely that collagen activation is mediated by the CD9 antigen, since SYB-1 F(ab′)2 fragments had no effect on collagen activation and aspirin also completely blocked the alkalinization response to collagen, in contrast with ALB-6.


Blood ◽  
1990 ◽  
Vol 76 (5) ◽  
pp. 953-958
Author(s):  
DS Houston ◽  
P Robinson ◽  
JM Gerrard

Studies were performed to determine whether endothelium-derived relaxing factor (EDRF) can inhibit platelet aggregation within the vascular lumen, and if so, whether the inhibition persists in the presence of red blood cells (RBCs). Canine femoral arteries mounted in an organ bath were perfused with physiologic saline solution to which acetylsalicylic acid was added to block prostacyclin formation. During contraction with phenylephrine, addition of acetylcholine to the perfusing solution to evoke EDRF release relaxed the vessel wall. Washed human platelets labeled with 14C-5-hydroxytryptamine were added to the perfusing solution, and activated by thrombin infused via a branch vessel. The perfusate was collected downstream and centrifuged; the fraction of 14C-5-hydroxytryptamine appearing in the supernatant reflected the degree of platelet activation. Stimulation of EDRF release with acetylcholine inhibited 14C-5-hydroxytryptamine release. Hemoglobin (Hb) (10(-5) mol/L) blocked vascular relaxation and platelet- inhibition. RBCs at a hematocrit of 10% (treated with echothiophate to block erythrocyte cholinesterase) did not prevent relaxation but reversed the platelet inhibition. Lower hematocrits did not completely block the inhibition. Thus, erythrocyte Hb may modulate the inhibition of intraluminal platelet aggregation by EDRF.


1975 ◽  
Vol 33 (02) ◽  
pp. 286-309 ◽  
Author(s):  
Jonathan L Miller ◽  
Alfred J Katz ◽  
Maurice B Feinstein

SummaryThe effects of plasmin treatment upon washed human platelets were studied in an attempt to elucidate the mechanisms underlying thrombin-induced platelet aggregation. At calcium concentrations of 10–20 μM, plasmin (0.2 CTA U/ml) inhibited thrombin-induced aggregation almost completely, but did not diminish the thrombin-induced release of adenine nucleotides, 5-hydroxytryptamine, or calcium. Increasing the calcium concentration partially antagonized plasmin’s inhibition of aggregation.Studies utilizing calcium chelators and the Kunitz soybean trypsin inhibitor (SBTI) as a plasmin inhibitor indicated that in order to achieve maximal block of aggregation, plasmin must act upon a substrate made fully available only after an initial thrombin-platelet interaction has taken place. Moreover, the time course of this inhibition parallels the time course of the thrombin-induced release reaction.Plasmin inhibition of aggregation could not be mimicked by exposing the platelets to proteolytic digests of fibrinogen at concentrations as high as 17% total platelet protein. Nor could inhibitory activity be recovered from supernatants of plasmin -treated platelets, upon centrifugation and treatment with SBTI.With the use of a “cold initiation” technique, the release by thrombin of 46.7 ± 6-7 (mean ± SEM) μg of fibrinogen immunological equivalents per mg platelet protein could be demonstrated. Platelets in which thrombin-induced aggregation was abolished by plasmin treatment (and the plasmin subsequently inactivated by SBTI) aggregated normally upon addition of as little as 10 μg human plasma fibrinogen per mg platelet protein.It is concluded that plasmin inhibition of aggregation most likely results from its attack upon a protein that is released or becomes fully available subsequent to interaction of thrombin with a platelet receptor mediating release. The results of this study are consistent with a cofactor role for fibrinogen in the aggregation of human platelets by thrombin.


1979 ◽  
Author(s):  
P. Andersen ◽  
C. Eika

α1-Acid glycoprotein (α1,-acid GP) isolated from human plasma was found to inhibit thrombin-induced aggregation of washed human platelets (0.05 NIH U/ml final conc.), and inhibition was complete with physiological concentrations of α1-acid GP (1.0-1.5 g/1 final conc.). The inhibitory effect seemed to occur immediately on thrombin addition, thus similar to the effect of heparin previously observed. As opposed to heparin, however, α1-acid GP did not affect spontaneous platelet aggregation. Furthermore, α1-acid GP (in optimal cone.) reduced the combined inhibitory effect of heparin and antithrombin III on thrombin-induced platelet aggregation, thus consistent with the previous findings using heparin thrombin clotting time.Snyder and Coodley (1976) found α1-acid GP to inhibit platelet aggregation induced by epinephrine and adenosine diphosphate in platelet-rich plasma. As we also found α1-acid GP to inhibit collagen-induced platelet aggregation, α1-acid GP may possibly act as an inhibitor of the release reaction though fairly high concentrations (10 mg/ml final cone.) was needed for complete inhibition.


Sign in / Sign up

Export Citation Format

Share Document