scholarly journals Cigarette Smoke Extract Inhibits Platelet Aggregation by Suppressing Cyclooxygenase Activity

TH Open ◽  
2017 ◽  
Vol 01 (02) ◽  
pp. e122-e129
Author(s):  
Hitoshi Kashiwagi ◽  
Koh-ichi Yuhki ◽  
Yoshitaka Imamichi ◽  
Fumiaki Kojima ◽  
Shima Kumei ◽  
...  

AbstractThe results of studies that were performed to determine whether cigarette smoking affects platelet function have been controversial, and the effects of nicotine- and tar-free cigarette smoke extract (CSE) on platelet function remain to be determined. The aim of this study was to determine the effect of CSE on platelet aggregation and to clarify the mechanism by which CSE affects platelet function. CSE inhibited murine platelet aggregation induced by 9,11-dideoxy-9α,11α-methanoepoxy-prosta-5Z,13E-dien-1-oic acid (U-46619), a thromboxane (TX) A2 receptor agonist, and that induced by collagen with respective IC50 values of 1.05 ± 0.14% and 1.34 ± 0.19%. A similar inhibitory action of CSE was also observed in human platelets. CSE inhibited arachidonic acid–induced TXA2 production in murine platelets with an IC50 value of 7.32 ± 2.00%. Accordingly, the inhibitory effect of CSE on collagen-induced aggregation was significantly blunted in platelets lacking the TXA2 receptor compared with the inhibitory effect in control platelets. In contrast, the antiplatelet effects of CSE in platelets lacking each inhibitory prostanoid receptor, prostaglandin (PG) I2 receptor and PGE2 receptor subtypes EP2 and EP4, were not significantly different from the effects in respective control platelets. Among the enzymes responsible for TXA2 production in platelets, the activity of cyclooxygenase (COX)-1 was inhibited by CSE with an IC50 value of 1.07 ± 0.15% in an uncompetitive manner. In contrast, the activity of TX synthase was enhanced by CSE. The results indicate that CSE inhibits COX-1 activity and thereby decreases TXA2 production in platelets, leading to inhibition of platelet aggregation.

1982 ◽  
Vol 48 (01) ◽  
pp. 078-083 ◽  
Author(s):  
C Ts'ao ◽  
S J Hart ◽  
D V Krajewski ◽  
P G Sorensen

SummaryEarlier, we found that ε-aminocaproic acid (EACA) inhibited human platelet aggregation induced by adenosine diphosphate (ADP) and collagen, but not aggregation by arachidonic acid (AA). Since EACA is structurally similar to lysine, yet these two agents exhibit vast difference in their antifibrinolytic activities, we chose to study the effect of lysine on platelet aggregation. We used L-lysine-HCl in these studies because of its high solubility in aqueous solutions while causing no change in pH when added to human plasma. With lysine, we repeatedly found inhibition of ADP-, collagen- and ristocetin-induced aggregation, but potentiation of AA-induced aggregation. Both the inhibitory and potentiation effects were dose-dependent. Low doses of lysine inhibited the secondary phase of aggregation; high doses of it also inhibited the primary phase of aggregation. Potentiation of AA-induced aggregation was accompanied by increased release of serotonin and formation of malondialdehyde. These effects were not confined to human platelets; rat platelets were similarly affected. Platelets, exposed to lysine and then washed and resuspended in an artificial medium not containing lysine, remained hypersensitive to AA, but no longer showed decreased aggregation by collagen. Comparing the effects of lysine with equimolar concentrations of sucrose, EACA, and α-amino-n-butyric acid, we attribute the potent inhibitory effect of lysine to either the excess positive charge or H+ and C1− ions. The -NH2 group on the α-carbon on lysine appears to be the determining factor for the potentiation effect; the effect seems to be exerted on the cyclooxygenase level of AA metabolism. Lysine and other chemicals with platelet-affecting properties similar to lysine may be used as a tool for the study of the many aspects of a platelet aggregation reaction.


1981 ◽  
Author(s):  
T Tsukada

Mechanism of Indium-111 oxine(In) transport in human platelets in buffered saline and the effect of In-labeling on platelet function were studied using In dissolved in 25% of ethanol in saline (In-ES) or 0.01% of polysorbate 80 in HEPES buffer(In-PH). Increase in temperature up to 37° C progressively enhanced the transport of In-ES, while transport of In-PH reached to plateau at 15°C. A states of equilibrium was not reached during 2 hr incubation at 22°C in In-ES. Uptake of In-PH reached to plateau after only 15 min of incubation. Distribution of In taken up by platelets in InES was 57% in cytosol and 27% in stroma, while in In-PH 69% in stroma and 22% in cytosol. 88% of In in cytosol was bound to lipids(46% in cholesterol and 27% in PS+PI). 82% of In in stroma was found in PS+PI fraction.The fact that the ratio of free In between the platelet water space and the outside medium after 30 min of incubation at up to 0.1 uM of In exceeded unity, suggests satura- , ble component of In transport prevails at this concentration in In-ES and In-PH. Kinetic constant could be calculated, Kt= 2nM, Vmax= 2.5 pmol/min/ml in In-ES, and Kt= InM, Vmax=0.7 pmol/min/ml in In-PH.Elution of In from radiolableled platelets in autologous plasma incubated at 37°C for 5 hr was less than 10% in the case of In-ES and 56% in the case of In-PH. Less than 3% of labeled-In was eluated from platelets in collagen-induced aggregation and 4-7% of In was eluated in thrombin-induced aggregation.Although 0.3% of ethanol and/or 6nM of oxine have no inhibitory effect of platelet aggregation, collagen-induced aggregation and release reaction of In-labeled platelet was impaired. 0.003% of polysorbate 80 itself abolished completely the aggregability of platelets by collagen or thrombin.It is concluded In-PH is unsuitable for platelet labeling. In-111 oxine also seems to have problems which Cr-51 has, i.e. inhomogenous distribution of In in a platelet population, elution of In from labeled platelets in circulation.


Blood ◽  
1977 ◽  
Vol 49 (1) ◽  
pp. 101-112 ◽  
Author(s):  
JH Joist ◽  
G Dolezel ◽  
MP Cucuianu ◽  
EE Nishizawa ◽  
JF Mustard

Abstract The effects of lysolecithin (LPC) on aggregation, serotonin release, shape, and lysis of rabbit, pig, or human platelets in platelet-rich plasma (PRP) or Tyrode albumin solution were examined during prolonged incubation. LPC added to citrated or heparinized PRP from humans or rabbits at a final concentration above 100 muM caused instantaneous inhibition of platelet aggregation induced by adenosine diphosphate (ADP), epinephrine (human PRP only), collagen, or thrombin. The inhibitory effect of LPC was found to be partially reversible over a period of 60–90 min. LPC at final concentrations above 30 muM also caused inhibition of ADP-, collagen-, and thrombin-induced aggregation and collagen- and thrombin-induced release of serotonin in suspensions of rabbit, pig, or human platelets. With washed platelets, the inhibitory effect not only rapidly disappeared but was followed by transient potentiation of aggregation and serotonin release. This potentiating effect of LPC was most pronounced when thrombin was used as stimulus. Both inhibition and potentiation were observed at concentrations of LPC that did not cause a significant change in platelet shape or loss from platelets of lactic dehydrogenase. Inhibition and potentiation were also observed when platelets were added to suspending medium containing LPC, although considerably higher concentrations of LPC were required under these conditions. Potentiation was not observed when LPC was added to citrated or heparinized rabbit or human PRP or to washed rabbit platelets suspended in a medium containing 4% bovine serum albumin. It seemed likely that some or all of the observed effects of LPC on platelet function were due to structural modification of the platelet membrane insufficient to result in gross membrane damage or platelet lysis. In addition, the results of experiments using 14C-LPC seemed to indicate that the observed potentiating effect of LPC on platelet function may be related to its rapid uptake and metabolism by the platelets.


Blood ◽  
1992 ◽  
Vol 79 (1) ◽  
pp. 110-116
Author(s):  
W Durante ◽  
MH Kroll ◽  
PM Vanhoutte ◽  
AI Schafer

Endothelium-derived relaxing factor (EDRF) inhibits platelet function, but the mechanism underlying this inhibitory effect is not known. To examine this, cultured acetylsalicylic acid (ASA)-treated endothelial cells (EC) from bovine aorta (BAEC) or from human umbilical vein (HUVEC) were incubated with washed, ASA-treated human platelets. Incubation of platelets with either BAEC or HUVEC resulted in inhibition of thrombin-induced platelet aggregation that was dependent on the number of EC added. This effect was potentiated by superoxide dismutase and reversed by treating EC with NG-nitro-L-arginine or by treating platelets with methylene blue, indicating that the inhibition of platelet aggregation was due to the release of EDRF by EC. EC significantly blocked the thrombin stimulated breakdown of phosphatidylinositol-4,5-bisphosphate (PIP2) and the production of phosphatidic acid in [32P]orthophosphate-labeled platelets and of inositol trisphosphate in [3H]myoinositol-labeled platelets. In addition, the thrombin-mediated activation of protein kinase C (PKC) and phosphorylation of myosin light chain were inhibited in the presence of EC. Finally, thrombin stimulated an increase in cytosolic ionized calcium concentration ([Ca2+]i) in fura2-loaded platelets that was abolished by concentrations of EC which also blocked thrombin- induced aggregation. These data indicate that EDRF blocks thrombin- induced platelet aggregation by inhibiting the activation of PIP2- specific phospholipase C and thereby suppressing the consequent activation of PKC and the mobilization of [Ca2+]i.


Blood ◽  
1992 ◽  
Vol 79 (1) ◽  
pp. 110-116 ◽  
Author(s):  
W Durante ◽  
MH Kroll ◽  
PM Vanhoutte ◽  
AI Schafer

Abstract Endothelium-derived relaxing factor (EDRF) inhibits platelet function, but the mechanism underlying this inhibitory effect is not known. To examine this, cultured acetylsalicylic acid (ASA)-treated endothelial cells (EC) from bovine aorta (BAEC) or from human umbilical vein (HUVEC) were incubated with washed, ASA-treated human platelets. Incubation of platelets with either BAEC or HUVEC resulted in inhibition of thrombin-induced platelet aggregation that was dependent on the number of EC added. This effect was potentiated by superoxide dismutase and reversed by treating EC with NG-nitro-L-arginine or by treating platelets with methylene blue, indicating that the inhibition of platelet aggregation was due to the release of EDRF by EC. EC significantly blocked the thrombin stimulated breakdown of phosphatidylinositol-4,5-bisphosphate (PIP2) and the production of phosphatidic acid in [32P]orthophosphate-labeled platelets and of inositol trisphosphate in [3H]myoinositol-labeled platelets. In addition, the thrombin-mediated activation of protein kinase C (PKC) and phosphorylation of myosin light chain were inhibited in the presence of EC. Finally, thrombin stimulated an increase in cytosolic ionized calcium concentration ([Ca2+]i) in fura2-loaded platelets that was abolished by concentrations of EC which also blocked thrombin- induced aggregation. These data indicate that EDRF blocks thrombin- induced platelet aggregation by inhibiting the activation of PIP2- specific phospholipase C and thereby suppressing the consequent activation of PKC and the mobilization of [Ca2+]i.


1979 ◽  
Author(s):  
P. Andersen ◽  
C. Eika

α1-Acid glycoprotein (α1,-acid GP) isolated from human plasma was found to inhibit thrombin-induced aggregation of washed human platelets (0.05 NIH U/ml final conc.), and inhibition was complete with physiological concentrations of α1-acid GP (1.0-1.5 g/1 final conc.). The inhibitory effect seemed to occur immediately on thrombin addition, thus similar to the effect of heparin previously observed. As opposed to heparin, however, α1-acid GP did not affect spontaneous platelet aggregation. Furthermore, α1-acid GP (in optimal cone.) reduced the combined inhibitory effect of heparin and antithrombin III on thrombin-induced platelet aggregation, thus consistent with the previous findings using heparin thrombin clotting time.Snyder and Coodley (1976) found α1-acid GP to inhibit platelet aggregation induced by epinephrine and adenosine diphosphate in platelet-rich plasma. As we also found α1-acid GP to inhibit collagen-induced platelet aggregation, α1-acid GP may possibly act as an inhibitor of the release reaction though fairly high concentrations (10 mg/ml final cone.) was needed for complete inhibition.


Blood ◽  
1982 ◽  
Vol 60 (2) ◽  
pp. 436-445 ◽  
Author(s):  
BL Linder ◽  
DS Goodman

Abstract We have previously reported that arachidonic acid induced a biphasic pattern of platelet aggregation and the release of both dense and alpha- granule components. Low levels of arachidonate (0.025--0.1 mM) specifically induced aggregation and release, while high concentrations (0.15--0.35 mM) caused a progressive inhibition of these platelet responses in human gel-filtered platelets (GFP). We now report studies of the mechanism(s) responsible for this arachidonate-induced turn-off of platelet function. Electron micrographic studies demonstrated that there was no gross damage to the platelets during the turn-off. Active synthesis of malondialdehyde and thromboxane A2 was seen at the high arachidonate levels, despite the inhibition of aggregation. Furthermore, GFP inhibited by 0.25 mM arachidonate were capable of undergoing aggregation and serotonin release in response to other stimuli, such as collagen or thrombin. Thus, GFP appeared to be metabolically intact and functional during the inhibiton by high arachidonate levels. Thin-layer chromatographic studies revealed that prostaglandin metabolism was not changed at the high arachidonate levels. In addition, indomethacin (20 microM) did not abolish the arachidonate-induced inhibition of platelet function. Therefore, the inhibitory effect of high arachidonate did not depend on its conversion to other prostaglandin products. Platelet cyclic AMP levels increased twofold at the high arachidonate concentrations (1.3 +/- 0.3 pmole/10(8) platelets at peak aggregation, compared with 2.9 +/- 0.4 pmole/10(8) platelets at inhibition by 0.25 mM arachidonate, p less than 0.001). Prostaglandin-D2, a platelet inhibitor known to increase cyclic AMP, generated a similar rise (to 2.4 +/- 0.2 pmole/10(8) platelets). Thus, the magnitude of the arachidonate-induced increase in platelet cyclic AMP levels can account for the inhibition of aggregation and release.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Haonan Liu ◽  
Molly L. Jackson ◽  
Lucy J. Goudswaard ◽  
Samantha F. Moore ◽  
James L. Hutchinson ◽  
...  

AbstractSphingosine 1-phosphate (S1P) is a bioactive signalling sphingolipid that is increased in diseases such as obesity and diabetes. S1P can modulate platelet function, however the direction of effect and S1P receptors (S1PRs) involved are controversial. Here we describe the role of S1P in regulating human platelet function and identify the receptor subtypes responsible for S1P priming. Human platelets were treated with protease-activated receptor 1 (PAR-1)-activating peptide in the presence or absence of S1P, S1PR agonists or antagonists, and sphingosine kinases inhibitors. S1P alone did not induce platelet aggregation but at low concentrations S1P enhanced PAR1-mediated platelet responses, whereas PAR1 responses were inhibited by high concentrations of S1P. This biphasic effect was mimicked by pan-S1PR agonists. Specific agonists revealed that S1PR1 receptor activation has a positive priming effect, S1PR2 and S1PR3 have no effect on platelet function, whereas S1PR4 and S1PR5 receptor activation have an inhibitory effect on PAR-1 mediated platelet function. Although platelets express both sphingosine kinase 1/2, enzymes which phosphorylate sphingosine to produce S1P, only dual and SphK2 inhibition reduced platelet function. These results support a role for SphK2-mediated S1P generation in concentration-dependent positive and negative priming of platelet function, through S1PR1 and S1PR4/5 receptors, respectively.


2010 ◽  
Vol 104 (10) ◽  
pp. 796-803 ◽  
Author(s):  
Koh-ichi Yuhki ◽  
Fumiaki Kojima ◽  
Takehiro Yamada ◽  
Takayuki Fujino ◽  
Akiyoshi Hara ◽  
...  

SummaryThe effect of selective activation of platelet prostaglandin (PG) E2 receptor subtype EP2 or EP4 on platelet aggregation remains to be determined. In platelets prepared from wild-type mice (WT platelets), high concentrations of PGE2 inhibited platelet aggregation induced by U-46619, a thromboxane receptor agonist. However, there was no significant change in the inhibitory effect of PGE2 on platelets lacking EP2 (EP2 –/– platelets) and EP4 (EP4 –/– platelets) compared with the inhibitory effect on WT platelets. On the other hand, AE1–259 and AE1–329, agonists for EP2 and EP4, respectively, potently inhibited U-46619 -induced aggregation with respective IC50 values of 590 ± 14 and 100 ± 4.9 nM in WT platelets, while the inhibition was significantly blunted in EP2 –/– and EP4 –/– platelets. In human platelets, AE1–259 and AE1–329 inhibited U-46619-induced aggregation with respective IC50 values of 640 ± 16 and 2.3 ± 0.3 nM. Notably, the inhibitory potency of AE1–329 in human platelets was much higher than that in murine platelets, while such a difference was not observed in the inhibitory potency of AE1–259. AE1–329 also inhibited adenosine diphosphate-induced platelet aggregation, and the inhibition was almost completely blocked by AE3–208, an EP4 antagonist. In addition, AE1–329 increased intracellular cAMP concentrations in a concentration- and EP4-dependent manner in human platelets. These results indicate that selective activation of EP2 or EP4 can inhibit platelet aggregation and that EP4 agonists are particularly promising as novel anti-platelet agents.


1977 ◽  
Vol 37 (03) ◽  
pp. 413-422 ◽  
Author(s):  
S. K Yu ◽  
J. G Latour

SummaryEpinephrine, known to potentiate and elicit aggregation of human platelets, was shown to inhibit thrombin-induced aggregation of rat platelets, delaying the onset of aggregation from 2 to 12 times. Incubation of rat platelet suspensions with propranolol (1.25–30 μM), inactive by itself, totally prevented the inhibitory effect of epinephrine and also permitted a potentiation effect to show up. On the contrary, phentolamine (1.25–30 μM) potentiated the inhibitory effect of epinephrine on rat platelets and unmasked an inhibitory effect on human platelets. Finally, isoproterenol (0.25–9 μM) produced a marked inhibition of aggregation induced by thrombin, ADP and collagen in the three species studied, but most particularly in the rat. From these results, we conclude that stimulation of the platelet adrenergic receptors may either result in promotion (α-stimulation) or inhibition (β-stimulation) of platelet aggregation. Furthermore, differences in the ratios or responses of α/β receptors may account for species variations in the platelet aggregation response to catecholamine challenge.


Sign in / Sign up

Export Citation Format

Share Document