scholarly journals Biochemical and biologic properties of rt-PA del (K296-G302), a recombinant human tissue-type plasminogen activator deletion mutant resistant to plasminogen activator inhibitor-1

Blood ◽  
1992 ◽  
Vol 79 (2) ◽  
pp. 417-429
Author(s):  
XK Li ◽  
HR Lijnen ◽  
L Nelles ◽  
B Van Hoef ◽  
JM Stassen ◽  
...  

A mutant of recombinant tissue-type plasminogen activator (rt-PA), obtained by deletion of residues Lys296 to Gly302 [rt-PA del(K296- G302)], was previously shown to be resistant to inhibition by plasminogen activator inhibitor-1 (PAI-1) (Madison et al, Nature 339:721, 1989). This mutant was obtained by expression of its cDNA in Chinese hamster ovary cells and purification to homogeneity from conditioned cell culture medium. It was obtained as a single chain molecule with amidolytic activity, specific fibrinolytic activity, and binding to fibrin and lysine, which were comparable or somewhat lower than those of wild-type rt-PA obtained in the same expression system. The plasminogen-activating potential of rt-PA del(K296-G302) in the presence of CNBr-digested fibrinogen was about twofold lower than that of wild-type rt-PA. The inhibition rate of rt-PA del(K296-G302) by recombinant PAI-1 (rPAI-1) was more than 500-fold lower than that of wild-type rt-PA. In a human plasma milieu in vitro, rt-PA del(K296- G302) induced dose-dependent lysis of a 125I-fibrin-labeled plasma clot; equi-effective concentrations (causing 50% clot lysis in 2 hours) were 0.28 micrograms/mL and 0.36 micrograms/mL for mutant and wild-type rt-PA, respectively. In this system, addition of rPAI-1 to the plasma resulted in a concentration-dependent reduction of the fibrinolytic potency of rt-PA del(K296-G302) and of rt-PA; a 50% reduction required 2.4 micrograms/mL and 0.15 micrograms/mL rPAI-1, respectively. Continuous infusion of mutant or wild-type rt-PA over 60 minutes in hamsters with a 125I-labeled plasma clot in the pulmonary artery resulted in dose-dependent clot lysis, with a thrombolytic potency (percent clot lysis per milligram of compound administered per kilogram of body weight) and a specific thrombolytic activity (percent clot lysis per microgram per milliliter steady state rt-PA-related antigen level in plasma) that were not significantly different. Bolus injection in hamsters of 1 mg/kg rPAI-1 followed by bolus injection of 1 mg/kg rt- PA del(K296-G302) or wild-type rt-PA resulted in neutralization of the thrombolytic potency of wild-type rt-PA, while the mutant retained approximately half of its thrombolytic potency. These results indicate that rt-PA del(K296-G302), with a known resistance to inhibition by rPAI-1 in purified systems, maintains this property both in a plasma milieu in vitro and in an experimental animal model of thrombolysis in vivo.(ABSTRACT TRUNCATED AT 400 WORDS).

Blood ◽  
1992 ◽  
Vol 79 (2) ◽  
pp. 417-429 ◽  
Author(s):  
XK Li ◽  
HR Lijnen ◽  
L Nelles ◽  
B Van Hoef ◽  
JM Stassen ◽  
...  

Abstract A mutant of recombinant tissue-type plasminogen activator (rt-PA), obtained by deletion of residues Lys296 to Gly302 [rt-PA del(K296- G302)], was previously shown to be resistant to inhibition by plasminogen activator inhibitor-1 (PAI-1) (Madison et al, Nature 339:721, 1989). This mutant was obtained by expression of its cDNA in Chinese hamster ovary cells and purification to homogeneity from conditioned cell culture medium. It was obtained as a single chain molecule with amidolytic activity, specific fibrinolytic activity, and binding to fibrin and lysine, which were comparable or somewhat lower than those of wild-type rt-PA obtained in the same expression system. The plasminogen-activating potential of rt-PA del(K296-G302) in the presence of CNBr-digested fibrinogen was about twofold lower than that of wild-type rt-PA. The inhibition rate of rt-PA del(K296-G302) by recombinant PAI-1 (rPAI-1) was more than 500-fold lower than that of wild-type rt-PA. In a human plasma milieu in vitro, rt-PA del(K296- G302) induced dose-dependent lysis of a 125I-fibrin-labeled plasma clot; equi-effective concentrations (causing 50% clot lysis in 2 hours) were 0.28 micrograms/mL and 0.36 micrograms/mL for mutant and wild-type rt-PA, respectively. In this system, addition of rPAI-1 to the plasma resulted in a concentration-dependent reduction of the fibrinolytic potency of rt-PA del(K296-G302) and of rt-PA; a 50% reduction required 2.4 micrograms/mL and 0.15 micrograms/mL rPAI-1, respectively. Continuous infusion of mutant or wild-type rt-PA over 60 minutes in hamsters with a 125I-labeled plasma clot in the pulmonary artery resulted in dose-dependent clot lysis, with a thrombolytic potency (percent clot lysis per milligram of compound administered per kilogram of body weight) and a specific thrombolytic activity (percent clot lysis per microgram per milliliter steady state rt-PA-related antigen level in plasma) that were not significantly different. Bolus injection in hamsters of 1 mg/kg rPAI-1 followed by bolus injection of 1 mg/kg rt- PA del(K296-G302) or wild-type rt-PA resulted in neutralization of the thrombolytic potency of wild-type rt-PA, while the mutant retained approximately half of its thrombolytic potency. These results indicate that rt-PA del(K296-G302), with a known resistance to inhibition by rPAI-1 in purified systems, maintains this property both in a plasma milieu in vitro and in an experimental animal model of thrombolysis in vivo.(ABSTRACT TRUNCATED AT 400 WORDS).


2016 ◽  
Vol 116 (12) ◽  
pp. 1032-1040 ◽  
Author(s):  
Xiaohua Zhou ◽  
Maarten L. V. Hendrickx ◽  
Gholamreza Hassanzadeh-Ghassabeh ◽  
Serge Muyldermans ◽  
Paul J. Declerck

SummaryPlasminogen activator inhibitor 1 (PAI-1) is the principal physiological inhibitor of tissue-type plasminogen activator (t-PA) and has been identified as a risk factor in cardiovascular diseases. In order to generate nanobodies against PAI-1 to interfere with its functional properties, we constructed three nanobody libraries upon immunisation of three alpacas with three different PAI-1 variants. Three panels of nanobodies were selected against these PAI-1 variants. Evaluation of the amino acid sequence identity of the complementarity determining region-3 (CDR3) reveals 34 clusters in total. Five nanobodies (VHH-s-a98, VHH-2w-64, VHH-s-a27, VHH-s-a93 and VHH-2g-42) representing five clusters exhibit inhibition towards PAI-1 activity. VHH-s-a98 and VHH-2w-64 inhibit both glycosylated and non-glycosylated PAI-1 variants through a substrate-inducing mechanism, and bind to two different regions close to αhC and the hinge region of αhF; the profibrinolytic effect of both nanobodies was confirmed using an in vitro clot lysis assay. VHH-s-a93 may inhibit PAI-1 activity by preventing the formation of the initial PAI-1•t-PA complex formation and binds to the hinge region of the reactive centre loop. Epitopes of VHH-s-a27 and VHH-2g-42 could not be deduced yet. These five nanobodies interfere with PAI-1 activity through different mechanisms and merit further evaluation for the development of future profibrinolytic therapeutics.


1994 ◽  
Vol 71 (01) ◽  
pp. 124-128 ◽  
Author(s):  
R V Shohet ◽  
S Spitzer ◽  
E L Madison ◽  
R Bassel-Duby ◽  
M-J Gething ◽  
...  

SummaryPlatelet-rich clots are inefficiently lysed by current fibrinolytic agents. Platelets contain a great deal of plasminogen activator inhibitor 1 (PAI-1), the principal endogenous inhibitor of tissue-type plasminogen activator (t-PA). We have tested whether PAI-1 resistant t-PAs would be more effective thrombolytic agents in an in vitro model of platelet rich clots. Clots were formed with recalcified human plasma without or with the addition of platelets. The lysis of these clots was followed by the release of incorporated 125I-fibrinogen. Mutant and wild-type t-PA were almost equally effective against clots lacking platelets but the mutant was twice as effective at lysing platelet-rich clots. A mechanism for this effect is suggested by the demonstration that a complex between wild-type t-PA and extruded platelet contents resembles that between purified t-PA and PAI-1 and that the PAI-1 resistant t-PA does not interfere with formation of this adduct. Because of its enhanced ability to lyse platelet-rich clots in vitro, further in vivo work may find that PAI-1 resistant t-PA is a more efficacious therapeutic agent than wild-type t-PA in situations where platelets contribute to the failure of thrombolysis.


1992 ◽  
Vol 68 (06) ◽  
pp. 672-677 ◽  
Author(s):  
Hitoshi Yahara ◽  
Keiji Matsumoto ◽  
Hiroyuki Maruyama ◽  
Tetsuya Nagaoka ◽  
Yasuhiro Ikenaka ◽  
...  

SummaryTissue-type plasminogen activator (t-PA) is a fibrin-specific agent which has been used to treat acute myocardial infarction. In an attempt to clarify the determinants for its rapid clearance in vivo and high affinity for fibrin clots, we produced five variants containing amino acid substitutions in the finger domain, at amino acid residues 7–9, 10–14, 15–19, 28–33, and 37–42. All the variants had a prolonged half-life and a decreased affinity for fibrin of various degrees. The 37–42 variant demonstrated about a 6-fold longer half-life with a lower affinity for fibrin. Human plasma clot lysis assay estimated the fibrinolytic activity of the 37–42 variant to be 1.4-fold less effective than that of the wild-type rt-PA. In a rabbit jugular vein clot lysis model, doses of 1.0 and 0.15 mg/kg were required for about 70% lysis in the wild-type and 37–42 variant, respectively. Fibrinogen was degraded only when the wild-type rt-PA was administered at a dose of 1.0 mg/kg. These findings suggest that the 37–42 variant can be employed at a lower dosage and that it is a more fibrin-specific thrombolytic agent than the wild-type rt-PA.


Stroke ◽  
2014 ◽  
Vol 45 (suppl_1) ◽  
Author(s):  
Qi Liu ◽  
Xiang Fan ◽  
Helen Brogren ◽  
Ming-Ming Ning ◽  
Eng H Lo ◽  
...  

Aims: Plasminogen activator inhibitor-1 (PAI-1) is the main and potent endogenous tissue-type plasminogen activator (tPA) inhibitor, but an important question on whether PAI-1 in blood stream responds and interferes with the exogenously administered tPA remains unexplored. We for the first time investigated temporal profiles of PAI-1 concentration and activity in circulation after stroke and tPA administration in rats. Methods: Permanent MCAO focal stroke of rats were treated with saline or 10mg/kg tPA at 3 hours after stroke (n=10 per group). Plasma (platelet free) PAI-1 antigen and activity levels were measured by ELISA at before stroke, 3, 4.5 (1.5 hours after saline or tPA treatments) and 24 hours after stroke. Since vascular endothelial cells and platelets are two major cellular sources for PAI-1 in circulation, we measured releases of PAI-1 from cultured endothelial cells and isolated platelets after direct tPA (4 μg/ml) exposures for 60 min in vitro by ELISA (n=4 per group). Results: At 3 hours after stroke, both plasma PAI-1 antigen and activity were significantly increased (3.09±0.67, and 3.42±0.57 fold of before stroke baseline, respectively, all data are expressed as mean±SE). At 4.5 hours after stroke, intravenous tPA administration significantly further elevated PAI-1 antigen levels (5.26±1.24), while as expected that tPA neutralized most elevated PAI-1 activity (0.33±0.05). At 24 hours after stroke, PAI-1 antigen levels returned to the before baseline level, however, there was a significantly higher PAI-1 activity (2.51±0.53) in tPA treated rats. In vitro tPA exposures significantly increased PAI-1 releases into culture medium in cultured endothelial cells (1.65±0.08) and platelets (2.02±0.17). Conclution: Our experimental results suggest that tPA administration may further elevate stroke-increased blood PAI-1 concentration, but also increase PAI-1 activity at late 24 hours after stroke. The increased PAI-1 releases after tPA exposures in vitro suggest tPA may directly stimulate PAI-1 secretions from vascular walls and circulation platelets, which partially contributes to the PAI-1 elevation observed in focal stroke rats. The underlying regulation mechanisms and pathological consequence need further investigation.


Blood ◽  
1997 ◽  
Vol 90 (4) ◽  
pp. 1527-1534
Author(s):  
Peter Carmeliet ◽  
Jean-Marie Stassen ◽  
Ilse Van Vlaenderen ◽  
Robert S. Meidell ◽  
Désiré Collen ◽  
...  

Impaired fibrinolysis, resulting from increased plasminogen activator inhibitor-1 (PAI-1) or reduced tissue-type plasminogen activator (t-PA) plasma levels, may predispose the individual to subacute thrombosis in sepsis and inflammation. The objective of these studies was to show that adenovirus-mediated gene transfer could increase systemic plasma t-PA levels and thrombolytic capacity in animal model systems. Recombinant adenovirus vectors were constructed that express either human wild type or PAI-1–resistant t-PA from the cytomegalovirus (CMV) promoter. Both t-PA-deficient (t-PA−/−) and PAI-1–overexpressing transgenic mice were infected by intravenous injection of these viruses. Intravenous injection of recombinant adenovirus resulted in liver gene transfer, t-PA synthesis, and secretion into the plasma. Virus dose, human t-PA antigen, and activity concentrations in plasma and extent of lysis of a 125I-fibrin–labeled pulmonary embolism were all closely correlated. Plasma t-PA antigen and activity were increased approximately 1,000-fold above normal levels. Clot lysis was significantly increased in mice injected with a t-PA–expressing virus, but not in mice injected with saline or an irrelevant adenovirus. Comparable levels of enzyme activity and clot lysis were obtained with wild type and inhibitor-resistant t-PA viruses. Adenovirus-mediated t-PA gene transfer was found to augment clot lysis as early as 4 hours after infection, but expression levels subsided within 7 days. Adenovirus-mediated transfer of a t-PA gene can effectively increase plasma fibrinolytic activity and either restore (in t-PA–deficient mice) or augment (in PAI-1–overexpressing mice) the thrombolytic capacity in simple animal models of defective fibrinolysis.


Blood ◽  
1992 ◽  
Vol 79 (6) ◽  
pp. 1420-1427 ◽  
Author(s):  
S Kunitada ◽  
GA FitzGerald ◽  
DJ Fitzgerald

Tissue-type plasminogen activator (t-PA) is less active in vivo and in vitro against clots that are enriched in platelets, even at therapeutic concentrations. The release of radioactivity from 125I-fibrin-labeled clots was decreased by 47% 6 hours after the addition of t-PA 400 U/mL when formed in platelet-rich versus platelet-poor plasma. This difference was not due to the release of plasminogen activator inhibitor-1 (PAI-1) by platelets. Thus, the fibrinolytic activity of t- PA in the supernatant was similar in the two preparations and fibrin autography demonstrated only a minor degree of t-PA-PAI-1 complex formation. Furthermore, a similar platelet-dependent reduction in clot lysis was seen with a t-PA mutant resistant to inhibition by PAI-1. The reduction in t-PA activity correlated with a decrease in t-PA binding to platelet-enriched clot (60% +/- 3% v platelet-poor clot, n = 5). This reduction in binding was also shown using t-PA treated with the chloromethylketone, D-Phe-Pro-Arg-CH2Cl (PPACK) (36% +/- 13%, n = 3), and with S478A, a mutant t-PA in which the active site serine at position 478 has been substituted by alanine (43% +/- 6%, n = 3). In contrast, fixed platelets and platelet supernatants had no effect on the binding or lytic activity of t-PA. Pretreatment with cytochalasin D 1 mumol/L, which inhibits clot retraction, also abolished the platelet- induced inhibition of lysis and t-PA binding by platelets. These data suggest that platelets inhibit clot lysis at therapeutic concentrations of t-PA as a consequence of clot retraction and decreased access of fibrinolytic proteins.


1994 ◽  
Vol 72 (06) ◽  
pp. 900-905 ◽  
Author(s):  
Harold A R Stringer ◽  
Peter van Swieten ◽  
Anton J G Horrevoets ◽  
Annelies Smilde ◽  
Hans Pannekoek

SummaryWe further investigated the role of the finger (F) and the kringle-2 (K2) domains of tissue-type plasminogen activator (t-PA) in fibrin-stimulated plasminogen activation. To that end, the action of purified (wt) t-PA or of variants lacking F (del.F) or K2 (del.K2) was assessed either in a static, human whole blood clot-lysis system or in whole blood thrombi generated in the “Chandler loop”. In both clot-lysis systems, significant differences were observed for the initiation of thrombolysis with equimolar concentrations of the t-PA variants. A relatively minor “lag phase” occurred in thrombolysis mediated by wt t-PA, whereas a 6.4-fold and 1.6-fold extension is found for del.F and del.K2, respectively. We observed identical lag-times, characteristic for each t-PA variant, in platelet-rich heads and in platelet-poor tails of thrombi. Since plasminogen activator inhibitor 1 (PAI-1) is preferentially retained in the platelet-rich heads, we conclude that the inhibitor does not interfere with the initial stage of thrombolysis but exerts its action in later stages, resulting in a reduction of the rate of clot lysis. A complementation clot-lysis assay was devised to study a potential interplay of del.F and del.K2. Accordingly, clot lysis was determined with combinations of del.F and del.K2 that were inversely varied in relation to equipotent dosage to distinguish between additive, antagonistic or synergistic effects of these variants. The isobole for combinations of del.F and del.K2 shows an independent, additive action of del.F and del.K2 in clot lysis. Under the conditions employed, namely a relatively high concentration of fibrin and Glu-plasminogen and a low concentration of t-PA variant, our data show: i) the crucial role of the F domain and the lack of effect of PAI-1 in initiation of thrombolysis, ii) the lack of importance of the fibrimbinding domains of t-PA and the regulatory role of PAI-1 in advanced stages of thrombolysis.


Sign in / Sign up

Export Citation Format

Share Document