scholarly journals bcl-2 proto-oncogene expression in normal and neoplastic human myeloid cells

Blood ◽  
1992 ◽  
Vol 79 (5) ◽  
pp. 1291-1298 ◽  
Author(s):  
D Delia ◽  
A Aiello ◽  
D Soligo ◽  
E Fontanella ◽  
C Melani ◽  
...  

The present study provides immunobiochemical and molecular data on the differentiation-linked expression of the bcl-2 proto-oncogene in normal and neoplastic myeloid cells. Using a recently developed monoclonal antibody (MoAb) to the bcl-2 molecule, staining of normal bone marrow myeloblasts, promyelocytes, and myelocytes, but neither monocytes nor most polymorphonuclear cells, was demonstrated. By two-color flow cytometric analysis, bcl-2 was evidenced in CD33+ and CD33+/CD34+ myeloid cells as well as in the more primitive CD33-/CD34+ population. The leukemic cell lines HL-60, KG1, GM-1, and K562 were bcl-2 positive together with 11 of 14 acute myeloid leukemias (AML) and three of three chronic myeloid leukemias (CML) in blast crises; six of seven CML were negative. Among myelodysplastic cases, augmentation of the bcl-2 positive myeloblastic compartment was found in refractory anemia with excess of blasts (RAEB) and in transformation (RAEB-t). Western blots of myeloid leukemias and control lymphocytes extracts evidenced an anti- bcl-2 immunoreactive band of the expected size (26 Kd). Moreover, the HL-60 and KG1 cell lines, both positive for the bcl-2 protein, exhibited the appropriate size bcl-2 mRNA (7.5 Kb). These findings clearly indicate that the bcl-2 gene is operative in myeloid cells and that the anti-bcl-2 MoAb identifies its product and not a cross- reactive epitope. Induction of HL-60 differentiation toward the monocytic and granulocytic pathways was accompanied by a marked decrease in bcl-2 mRNA and protein levels; bivariate flow cytometric analysis showed that the fraction becoming bcl-2 negative was in the G1 phase of the cell cycle. These data establish that the bcl-2 proto- oncogene is expressed on myeloid cells and their progenitors and is regulated in a differentiation-linked manner.

Blood ◽  
1992 ◽  
Vol 79 (5) ◽  
pp. 1291-1298 ◽  
Author(s):  
D Delia ◽  
A Aiello ◽  
D Soligo ◽  
E Fontanella ◽  
C Melani ◽  
...  

Abstract The present study provides immunobiochemical and molecular data on the differentiation-linked expression of the bcl-2 proto-oncogene in normal and neoplastic myeloid cells. Using a recently developed monoclonal antibody (MoAb) to the bcl-2 molecule, staining of normal bone marrow myeloblasts, promyelocytes, and myelocytes, but neither monocytes nor most polymorphonuclear cells, was demonstrated. By two-color flow cytometric analysis, bcl-2 was evidenced in CD33+ and CD33+/CD34+ myeloid cells as well as in the more primitive CD33-/CD34+ population. The leukemic cell lines HL-60, KG1, GM-1, and K562 were bcl-2 positive together with 11 of 14 acute myeloid leukemias (AML) and three of three chronic myeloid leukemias (CML) in blast crises; six of seven CML were negative. Among myelodysplastic cases, augmentation of the bcl-2 positive myeloblastic compartment was found in refractory anemia with excess of blasts (RAEB) and in transformation (RAEB-t). Western blots of myeloid leukemias and control lymphocytes extracts evidenced an anti- bcl-2 immunoreactive band of the expected size (26 Kd). Moreover, the HL-60 and KG1 cell lines, both positive for the bcl-2 protein, exhibited the appropriate size bcl-2 mRNA (7.5 Kb). These findings clearly indicate that the bcl-2 gene is operative in myeloid cells and that the anti-bcl-2 MoAb identifies its product and not a cross- reactive epitope. Induction of HL-60 differentiation toward the monocytic and granulocytic pathways was accompanied by a marked decrease in bcl-2 mRNA and protein levels; bivariate flow cytometric analysis showed that the fraction becoming bcl-2 negative was in the G1 phase of the cell cycle. These data establish that the bcl-2 proto- oncogene is expressed on myeloid cells and their progenitors and is regulated in a differentiation-linked manner.


1994 ◽  
Vol 174 (2) ◽  
pp. 95-107 ◽  
Author(s):  
KIYOSHI ISHIYAMA ◽  
SHINJI SATOH ◽  
YOSHIHARU IGARASHI ◽  
HIROAKI KUMAGAI ◽  
AKITO YAHAGI ◽  
...  

Blood ◽  
2001 ◽  
Vol 98 (12) ◽  
pp. 3492-3494 ◽  
Author(s):  
Udomsak Bunworasate ◽  
Hilal Arnouk ◽  
Hans Minderman ◽  
Kieran L. O'Loughlin ◽  
Sheila N. J. Sait ◽  
...  

Abstract Acute monoblastic leukemia (acute myeloid leukemia [AML], French-American-British type M5a) with leukemia cutis developed in a patient 6 weeks after the initiation of erythropoietin (EPO) therapy for refractory anemia with ringed sideroblasts. AML disappeared from both marrow and skin after the discontinuation of EPO. Multiparameter flow cytometric analysis of bone marrow cells demonstrated coexpression of the EPO receptor with CD45 and CD13 on the surface of blasts. The incubation of marrow cells with EPO, compared to without, resulted in 1.3- and 1.6-fold increases, respectively, in tritiated thymidine incorporation and bromodeoxyuridine incorporation into CD13+ cells. Clinical and laboratory findings were consistent with the EPO-dependent transformation of myelodysplastic syndrome (MDS) to AML. It is concluded that leukemic transformation in patients with MDS treated with EPO may be EPO-dependent and that management should consist of the discontinuation of EPO followed by observation, if clinically feasible.


1995 ◽  
Vol 14 (6) ◽  
pp. 425-433 ◽  
Author(s):  
Xiao-Chun Wang ◽  
Kazumi Norose ◽  
Akihiko Yano ◽  
Kouichi Ohta ◽  
Katsuzo Segawa

Sign in / Sign up

Export Citation Format

Share Document