scholarly journals Human T-cell development in SCID-hu mice: staphylococcal enterotoxins induce specific clonal deletions, proliferation, and anergy

Blood ◽  
1992 ◽  
Vol 80 (12) ◽  
pp. 3144-3156 ◽  
Author(s):  
EK Waller ◽  
A Sen-Majumdar ◽  
OW Kamel ◽  
GA Hansteen ◽  
MR Schick ◽  
...  

Abstract SCID-hu mice provide an in vivo model for studying the events of normal intrathymic human T-cell development and differentiation. We injected SCID-hu mice with staphylococcal enterotoxins (SE) and determined their effects on the development and responsiveness of human T-cell populations defined by their expression of CD4 and CD8, and the type of V beta molecule in their T-cell receptors. After single intraperitoneal injections of SEB or SEE, we observed specific effects on thymic T cells expressing a cognate V beta T-cell receptor (TCR) (V beta 12.1 in the case of SEB-treated SCID-hu mice and V beta 8.1 in the case of SEE-treated mice) using both immunohistochemical staining of thymic frozen sections and flow cytometric analyses. An injection of SEB resulted in a 32% decrease in the total percentages of V beta 12.1+ cells in thymic sections after 2 days, with the greatest effect seen in the medulla, without a demonstrable effect on V beta 5.2/5.3+ or V beta 8.1+ cells. Fluorescence-activated cell sorter analysis demonstrated that TCRhi thymocytes expressing a cognate V beta TCR declined transiently by 35% to 45% 1 to 2 days after the injection of SE. Analysis of thymic subpopulations showed decreases in the TCRhi CD4+8- and CD4–8+ cells and an increase in TCRlo CD4–8+ cells. Multiple injections of SE resulted in 50% to 60% decreases in cognate V beta TCR+ CD4+8- populations. Thymocytes prepared from SE-treated SCID-hu mice demonstrated specific anergy to the SE to which they had previously been exposed in vivo, but had a normal proliferative response to other superantigens in an in vitro assay. In contrast to the effects on thymic T cells, single injections of SE resulted in a twofold increase in the total numbers of circulating CD4+8- and CD4–8+ human T cells and a fourfold to eightfold increase in T cells expressing a cognate V beta TCR. Using SE as superantigens in SCID-hu mice, we have been able to induce antigen-specific clonal deletions, anergy, and proliferation of human T cells.

Blood ◽  
1992 ◽  
Vol 80 (12) ◽  
pp. 3144-3156
Author(s):  
EK Waller ◽  
A Sen-Majumdar ◽  
OW Kamel ◽  
GA Hansteen ◽  
MR Schick ◽  
...  

SCID-hu mice provide an in vivo model for studying the events of normal intrathymic human T-cell development and differentiation. We injected SCID-hu mice with staphylococcal enterotoxins (SE) and determined their effects on the development and responsiveness of human T-cell populations defined by their expression of CD4 and CD8, and the type of V beta molecule in their T-cell receptors. After single intraperitoneal injections of SEB or SEE, we observed specific effects on thymic T cells expressing a cognate V beta T-cell receptor (TCR) (V beta 12.1 in the case of SEB-treated SCID-hu mice and V beta 8.1 in the case of SEE-treated mice) using both immunohistochemical staining of thymic frozen sections and flow cytometric analyses. An injection of SEB resulted in a 32% decrease in the total percentages of V beta 12.1+ cells in thymic sections after 2 days, with the greatest effect seen in the medulla, without a demonstrable effect on V beta 5.2/5.3+ or V beta 8.1+ cells. Fluorescence-activated cell sorter analysis demonstrated that TCRhi thymocytes expressing a cognate V beta TCR declined transiently by 35% to 45% 1 to 2 days after the injection of SE. Analysis of thymic subpopulations showed decreases in the TCRhi CD4+8- and CD4–8+ cells and an increase in TCRlo CD4–8+ cells. Multiple injections of SE resulted in 50% to 60% decreases in cognate V beta TCR+ CD4+8- populations. Thymocytes prepared from SE-treated SCID-hu mice demonstrated specific anergy to the SE to which they had previously been exposed in vivo, but had a normal proliferative response to other superantigens in an in vitro assay. In contrast to the effects on thymic T cells, single injections of SE resulted in a twofold increase in the total numbers of circulating CD4+8- and CD4–8+ human T cells and a fourfold to eightfold increase in T cells expressing a cognate V beta TCR. Using SE as superantigens in SCID-hu mice, we have been able to induce antigen-specific clonal deletions, anergy, and proliferation of human T cells.


Blood ◽  
2009 ◽  
Vol 113 (14) ◽  
pp. 3254-3263 ◽  
Author(s):  
Tom Taghon ◽  
Inge Van de Walle ◽  
Greet De Smet ◽  
Magda De Smedt ◽  
Georges Leclercq ◽  
...  

Abstract Notch signaling is absolutely required for β-selection during mouse T-cell development, both for differentiation and proliferation. In this report, we investigated whether Notch has an equally important role during human T-cell development. We show that human CD34+ thymocytes can differentiate into CD4+CD8β+ double positive (DP) thymocytes in the absence of Notch signaling. While these DP cells phenotypically resemble human β-selected cells, they lack a T-cell receptor (TCR)–β chain. Therefore, we characterized the β-selection checkpoint in human T-cell development, using CD28 as a differential marker at the immature single positive CD4+CD3−CD8α− stage. Through intracellular TCR-β staining and gene expression analysis, we show that CD4+CD3−CD8α−CD28+ thymocytes have passed the β-selection checkpoint, in contrast to CD4+CD3−CD8α−CD28− cells. These CD4+CD3−CD8α−CD28+ thymocytes can efficiently differentiate into CD3+TCRαβ+ human T cells in the absence of Notch signaling. Importantly, preselection CD4+CD3−CD8α−CD28− thymocytes can also differentiate into CD3+TCRαβ+ human T cells without Notch activation when provided with a rearranged TCR-β chain. Proliferation of human thymocytes, however, is clearly Notch-dependent. Thus, we have characterized the β-selection checkpoint during human T-cell development and show that human thymocytes require Notch signaling for proliferation but not for differentiation at this stage of development.


Blood ◽  
1996 ◽  
Vol 88 (2) ◽  
pp. 721-730 ◽  
Author(s):  
H Segall ◽  
I Lubin ◽  
H Marcus ◽  
A Canaan ◽  
Y Reisner

Severe combined immunodeficient (SCID) mice are increasingly used as hosts for the adoptive transfer of human lymphocytes. Human antibody responses can be obtained in these xenogeneic chimeras, but information about the functionality of the human T cells in SCID mice is limited and controversial. Studies using human peripheral blood lymphocytes (PBL) injected intraperitoneally (IP) into SCID mice (hu-PBL-SCID mice) have shown that human T cells from these chimeras are anergic and have a defective signaling via the T-cell receptor. In addition, their antigenic repertoire is limited to xenoreactive clones. In the present study, we tested the functionality of human T cell in a recently described chimeric model. In this system, BALB/c mice are conditioned by irradiation and then transplanted with SCID bone marrow, followed by IP injection of human PBL. Our experiments demonstrated that human T cells, recovered from these hu-PBL-BALB mice within 1 month posttransplant, proliferated and expressed activation markers upon stimulation with anti-CD3 monoclonal antibody. A vigorous antiallogeneic human cytotoxic T-lymphocyte (CTL) response could be generated in these mice by immunizing them with irradiated allogeneic cells. Moreover, anti-human immunodeficiency virus type 1 (HIV-1) Net- specific human CTLs could be generated in vivo from naive lymphocytes by immunization of mouse-human chimeras with a recombinant vaccinia-nef virus. This model may be used to evaluate potential immunomodulatory drugs or cytokines, and could provide a relevant model for testing HIV vaccines, for production of antiviral T-cell clones for adoptive therapy, and for studying human T-cell responses in vivo.


1989 ◽  
Vol 44 (S1) ◽  
pp. 43-47 ◽  
Author(s):  
Jack L. Strominger ◽  
Marina Fabbi ◽  
Margaret Prendergast ◽  
Richard T. Maziarz ◽  
Steven J. Burakoff ◽  
...  

2007 ◽  
Vol 3 (1) ◽  
pp. 57-75 ◽  
Author(s):  
Ross La Motte-Mohs ◽  
Geneve Awong ◽  
Juan Carlos Zuniga-Pflucker

Blood ◽  
2005 ◽  
Vol 106 (1) ◽  
pp. 193-200 ◽  
Author(s):  
Rafik Terra ◽  
Isabelle Louis ◽  
Richard Le Blanc ◽  
Sophie Ouellet ◽  
Juan Carlos Zúñiga-Pflücker ◽  
...  

In the thymus, 2 types of Lin–Sca-1+ (lineage-negative stem cell antigen-1–positive) progenitors can generate T-lineage cells: c-Kithi interleukin-7 receptor α–negative (c-KithiIL-7Rα–) and c-KitloIL-7Rα+. While c-KithiIL-7Rα– progenitors are absent, c-KitloIL-7Rα+ progenitors are abundant in the lymph nodes (LNs). c-KitloIL-7Rα+ progenitors undergo abortive T-cell commitment in the LNs and become arrested in the G1 phase of the cell cycle because they fail both to up-regulate c-myb, c-myc, and cyclin D2 and to repress junB, p16INK4a, and p21Cip1/WAF. As a result, development of LN c-KitloIL-7Rα+ progenitors is blocked at an intermediate CD44+CD25lo development stage in vivo, and LN-derived progenitors fail to generate mature T cells when cultured with OP9-DL1 stromal cells. LN stroma can provide key signals for T-cell development including IL-7, Kit ligand, and Delta-like–1 but lacks Wnt4 and Wnt7b transcripts. LN c-KitloIL-7Rα+ progenitors are able to generate mature T cells when cultured with stromal cells producing wingless-related MMTV integration site 4 (Wnt4) or upon in vivo exposure to oncostatin M whose signaling pathway intersects with Wnt. Thus, supplying Wnt signals to c-KitloIL-7Rα+ progenitors may be sufficient to transform the LN into a primary T-lymphoid organ. These data provide unique insights into the essence of a primary T-lymphoid organ and into how a cryptic extrathymic T-cell development pathway can be amplified.


Blood ◽  
1996 ◽  
Vol 88 (11) ◽  
pp. 4239-4245 ◽  
Author(s):  
J Plum ◽  
M De Smedt ◽  
G Leclercq ◽  
B Verhasselt ◽  
B Vandekerckhove

Highly purified human CD34+ fetal liver stem cells differentiate to mature T cells when seeded in vitro into isolated fetal thymic lobes of severe combined immunodeficient (SCID) mice followed by fetal thymus organ culture (FTOC). Here, this chimeric human-mouse FTOC was used to address the role of interleukin-7 (IL-7) and of the alpha chain of the IL-7 receptor (IL-7R alpha) in early human T-cell development. We report that addition of either the monoclonal antibody (MoAb) M25, which neutralizes both human and mouse IL-7, or the MoAb M21, which recognizes and blocks exclusively the human high-affinity alpha-chain of the IL-7R, results in a profound reduction in human thymic cellularity. Analysis of lymphoid subpopulations indicates that a highly reduced number of cells undergo maturation from CD34+ precursor cells toward CD4+CD3-CD1+ progenitor cells and subsequently toward CD4+CD8+ thymocytes. Our results reveal a critical role for IL-7 during early human thymocyte development, and may explain the absence or highly reduced levels of T cells in patients with X-linked SCID. The molecular defect in these patients has been shown to be a mutation in the gamma chain of the IL-2R. Although this gamma chain is not only present in the IL-2R, but also forms an essential part of other cytokine receptors, including IL-4, IL-7, IL-9, IL-13, and IL-15, the T- cell defect in these patients can be explained by the fact that IL-7 is not able to transduce its signal by the molecular defect of the common gamma (gamma c) chain and that IL-7 is indispensable for T-cell development.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 248-248 ◽  
Author(s):  
Leonard Shultz ◽  
Bonnie L. Lyons ◽  
Lisa M. Burzenski ◽  
Bruce Gott ◽  
X. Chen ◽  
...  

Abstract We have developed, characterized, and validated a new genetic stock of IL-2r common γ (gamma) chain deficient NOD/LtSz-scid (NOD-scid IL2rγnull) mice that support high levels of human hematopoietic stem cell (HSC) engraftment and multilineage differentiation. Histology, flow cytometry, and functional assays document a severe depletion of lymphocytes and NK cells in NOD-scid IL2rγnull mice. These mice survive beyond 16 months of age and untreated as well as sub-lethally irradiated NOD-scid IL2rγnull mice are resistant to the development of lymphomas and are “non-leaky” throughout life. Intravenous injection of sub-lethally irradiated NOD-scid IL2rγnull mice with 7 x 105 human mobilized CD34+ stem cells leads to high levels of multilineage engraftment. At 10 weeks after engraftment, percentages of human hematopoietic CD45+ cells are six-fold higher in the bone marrow of NOD-scid IL2rγnull mice as compared to NOD-scid controls. Human CD45+ cells include immature and mature B cells, NK cells, myeloid cells, plasmacytoid dendritic cells and HSCs. Spleens from engrafted NOD-scid IL2rγnull mice contain high percentages of immature and mature B cells but low percentages of T cells. Treatment with human Fc-IL7 fusion protein leads to a high percentage of human CD4+CD8+ immature thymocytes and high percentages of CD4+CD8− and CD4−CD8+ mature human T cells in the spleen and blood. Validation of de novo human T cell development was carried out by quantifying T cell receptor excision circles in thymocytes and by analyses of TCRβ repertoire diversity. Human T cell function was evidenced by proliferative responses to PHA and streptococcal superantigen. NOD-scid IL2rγnull mice engrafted with human HSC generate differentiated functional human T and B cells and provide an in vivo model of multilineage human hematopoietic cell engraftment.


Sign in / Sign up

Export Citation Format

Share Document