scholarly journals OMA-AML-1: a leukemic myeloid cell line with CD34+ progenitor and CD15+ spontaneously differentiating cell compartments

Blood ◽  
1992 ◽  
Vol 80 (4) ◽  
pp. 1026-1032 ◽  
Author(s):  
SJ Pirruccello ◽  
JD Jackson ◽  
MS Lang ◽  
J DeBoer ◽  
S Mann ◽  
...  

Abstract OMA-AML-1 was established from a patient with acute myelomonocytic (M4) leukemia at fifth relapse when blasts were greater than 85% CD34+, CD15- . Leukemic cells were established in suspension culture and independently grown as subcutaneous tumors in SCID mice. Cells growing in suspension culture underwent differentiation by phenotypic and morphologic criteria. In contrast, cells grown as subcutaneous solid tumors in SCID mice maintained progenitor cell characteristics with high-density CD34 expression and lack of morphologic differentiation. A tendency toward differentiation to CD15+, CD34- cells in vitro and self- renewal of CD34+, CD15- cells in vivo was consistently demonstrated regardless of whether cells were initially grown in vitro or in vivo. The cell line maintains both a CD34+, CD15- progentitor cell pool and a non-overlapping, CD15+, CD34- differentiating cell compartment after more than 1 year in continuous culture. Cell cycle analysis and cloning experiments were consistent with terminal differentiation occurring in the CD15+, CD34- population. The cell line shows concentration- dependent proliferative responses to interleukin (IL)-3, granulocyte- macrophage colony-stimulating factor (GM-CSF), and IL-6, but not to granulocyte CSF (G-CSF). OMA-AML-1 appears to mimic several features of normal myeloid hematopoiesis and should prove useful for the study of normal and malignant myeloid differentiation.

Blood ◽  
1992 ◽  
Vol 80 (4) ◽  
pp. 1026-1032
Author(s):  
SJ Pirruccello ◽  
JD Jackson ◽  
MS Lang ◽  
J DeBoer ◽  
S Mann ◽  
...  

OMA-AML-1 was established from a patient with acute myelomonocytic (M4) leukemia at fifth relapse when blasts were greater than 85% CD34+, CD15- . Leukemic cells were established in suspension culture and independently grown as subcutaneous tumors in SCID mice. Cells growing in suspension culture underwent differentiation by phenotypic and morphologic criteria. In contrast, cells grown as subcutaneous solid tumors in SCID mice maintained progenitor cell characteristics with high-density CD34 expression and lack of morphologic differentiation. A tendency toward differentiation to CD15+, CD34- cells in vitro and self- renewal of CD34+, CD15- cells in vivo was consistently demonstrated regardless of whether cells were initially grown in vitro or in vivo. The cell line maintains both a CD34+, CD15- progentitor cell pool and a non-overlapping, CD15+, CD34- differentiating cell compartment after more than 1 year in continuous culture. Cell cycle analysis and cloning experiments were consistent with terminal differentiation occurring in the CD15+, CD34- population. The cell line shows concentration- dependent proliferative responses to interleukin (IL)-3, granulocyte- macrophage colony-stimulating factor (GM-CSF), and IL-6, but not to granulocyte CSF (G-CSF). OMA-AML-1 appears to mimic several features of normal myeloid hematopoiesis and should prove useful for the study of normal and malignant myeloid differentiation.


Blood ◽  
1988 ◽  
Vol 71 (2) ◽  
pp. 375-382 ◽  
Author(s):  
J Lotem ◽  
L Sachs

The normal myeloid hematopoietic regulatory proteins include one class of proteins that induces viability and multiplication of normal myeloid precursor cells to form colonies (colony-stimulating factors [CSF] and interleukin 3 [IL-3], macrophage and granulocyte inducing proteins, type 7 [MGI-1]) and another class (called MGI-2) that induces differentiation of normal myeloid precursors without inducing cell multiplication. Different clones of myeloid leukemic cells can differ in their response to these regulatory proteins. One type of leukemic clone can be differentiated in vitro to mature cells by incubating with the growth-inducing proteins granulocyte-macrophage (GM) CSF or IL-3, and another type of clone can be differentiated in vitro to mature cells by the differentiation-inducing protein MGI-2. We have now studied the ability of different myeloid regulatory proteins to induce the in vivo differentiation of these different types of mouse myeloid leukemic clones in normal and cyclophosphamide-treated mice. The results show that in both types of mice (a) the in vitro GM-CSF- and IL- 3-sensitive leukemic cells were induced to differentiate to mature cells in vivo in mice injected with pure recombinant GM-CSF and IL-3 but not with G-CSF, M-CSF, or MGI-2; (b) the in vitro MGI-2-sensitive leukemic cells differentiated in vivo by injection of MGI-2 and also, presumably indirectly, by GM-CSF and IL-3 but not by M-CSF or G-CSF; (c) in vivo induced differentiation of the leukemic cells was associated with a 20- to 60-fold decrease in the number of blast cells; and (d) all the injected myeloid regulatory proteins stimulated the normal myelopoietic system. Different normal myeloid regulatory proteins can thus induce in vivo terminal differentiation of leukemic cells, and it is suggested that these proteins can have a therapeutic potential for myeloid leukemia in addition to their therapeutic potential in stimulating normal hematopoiesis.


Blood ◽  
2000 ◽  
Vol 95 (5) ◽  
pp. 1758-1766 ◽  
Author(s):  
Philipp le Coutre ◽  
Elena Tassi ◽  
Marileila Varella-Garcia ◽  
Rossella Barni ◽  
Luca Mologni ◽  
...  

The 2-phenylaminopyrimidine derivative STI571 has been shown to selectively inhibit the tyrosine kinase domain of the oncogenicbcr/abl fusion protein. The activity of this inhibitor has been demonstrated so far both in vitro with bcr/abl expressing cells derived from leukemic patients, and in vivo on nude mice inoculated with bcr/abl positive cells. Yet, no information is available on whether leukemic cells can develop resistance to bcr/ablinhibition. The human bcr/abl expressing cell line LAMA84 was cultured with increasing concentrations of STI571. After approximately 6 months of culture, a new cell line was obtained and named LAMA84R. This newly selected cell line showed an IC50 for the STI571 (1.0 μM) 10-fold higher than the IC50 (0.1 μM) of the parental sensitive cell line. Treatment with STI571 was shown to increase both the early and late apoptotic fraction in LAMA84 but not in LAMA84R. The induction of apoptosis in LAMA84 was associated with the activation of caspase 3–like activity, which did not develop in the resistant LAMA84R cell line. LAMA84R cells showed increased levels of bcr/abl protein and mRNA when compared to LAMA84 cells. FISH analysis with BCR- and ABL-specific probes in LAMA84R cells revealed the presence of a marker chromosome containing approximately 13 to 14 copies of the BCR/ABL gene. Thus, overexpression of the Bcr/Abl protein mediated through gene amplification is associated with and probably determines resistance of human leukemic cells to STI571 in vitro.


Blood ◽  
1992 ◽  
Vol 79 (5) ◽  
pp. 1172-1177 ◽  
Author(s):  
T Peled ◽  
M Rigel ◽  
D Peritt ◽  
E Fibach ◽  
AJ Treves ◽  
...  

Abstract This study aimed to assess the effect of the M20 interleukin-1 (IL-1) inhibitor on normal and leukemic hematopoietic cells. The M20-derived IL-1 inhibitor was found to inhibit the growth of various hematopoietic cells. The in vitro proliferation of myeloid cell lines in serum- containing medium or proliferation of these cells induced by IL-1 in serum-free medium (measured by 3H-TdR) were inhibited by the M20 IL-1 inhibitor. In addition, growth of normal progenitors and fresh leukemic cells stimulated by granulocyte-macrophage colony-stimulating factor (GM-CSF) (as measured by colony and liquid systems) was also inhibited by this factor. After the removal of the IL-1 inhibitor at the peak of growth inhibition, leukemic and normal progenitor cells retain their ability to grow and develop into GM-CSF colonies. These results show that the growth inhibition phenomena were reversible and did not result from a cytotoxic effect. Our data suggest that the M20-derived IL-1 inhibitor might function as a true negative growth regulator of normal and leukemic hematopoietic cells.


Blood ◽  
1996 ◽  
Vol 88 (10) ◽  
pp. 3710-3719 ◽  
Author(s):  
C Mantel ◽  
Z Luo ◽  
J Canfield ◽  
S Braun ◽  
C Deng ◽  
...  

Steel factor (SLF) is a hematopoietic cytokine that synergizes with other growth factors to induce a greatly enhanced proliferative state of hematopoietic progenitor cells and factor-dependent cell lines. Even though the in vivo importance of SLF in the maintenance and responsiveness of stem and progenitor cells is well documented, the molecular mechanism involved in its synergistic effects are mainly unknown. Some factor-dependent myeloid cell lines respond to the synergistic proliferative effects of SLF plus other cytokines in a manner similar to that of normal myeloid progenitor cells from bone marrow and cord blood. We show here that SLF can synergize with granulocyte-macrophage colony-stimulating factor (GM-CSF) to induce an enhanced phosphorylation of the retinoblastoma gene product and a synergistic increase in the total intracellular protein level of the cyclin-dependent kinase inhibitor, p21cip-1, which is correlated with a simultaneous decrease in p27kip-1 in the human factor-dependent myeloid cell line, M07e. Moreover, these cytokines synergize to increase p21cip- 1 binding and decrease p27kip-1 binding to cyclin-dependent kinase-2 (cdk2), an enzyme required for normal cell cycle progression; these inverse events correlated with increased cdk2 kinase activity. It is also shown that exogenous purified p21cip-1 can displace p27kip-1 already bound to cdk2 in vitro. These data implicate increased p21cip-1 and decreased p27kip-1 intracellular concentrations and their stoichiometric interplay in the enhanced proliferative status of cells stimulated by the combination of SLF and GM-CSF. In support of these findings, it is shown that hematopoietic progenitor cells from mice lacking p21cip-1 are defective in SLF synergistic proliferative response in vitro. Moreover, the cycling status of marrow and spleen progenitors and absolute numbers of marrow progenitors were significantly decreased in the p21cip-1 -/-, compared with the +/+ mice. We conclude that the cdk threshold regulators p21cip-1 and p27kip- 1 play a critical role in the normal mitogenic response of M07e cells and murine myeloid progenitor cells to these cytokines and particularly in the SLF synergistic proliferative response that is important to the normal maintenance of the stem/progenitor cell compartment.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2744-2744 ◽  
Author(s):  
Obdulio Piloto ◽  
Patrick Brown ◽  
Li Li ◽  
Bao Nguyen ◽  
Kyu-Tae Kim ◽  
...  

Abstract The class III receptor tyrosine kinase, FLT3, is expressed by >90% of B-lineage acute lymphoblastic leukemias (ALL) blasts. In addition, it is expressed at extremely high levels in ALL patients with MLL-rearrangements or hyperdiploidy and sometimes mutated in these same patients. In this report, we investigated the effects of EB10, an anti-human FLT3 monoclonal antibody capable of preventing binding of FLT3 ligand (FL), on ALL cell lines and primary cells. In vitro studies, examining the ability of EB10 to inhibit FLT3 activation and downstream signaling in ALL cell lines and primary blasts, yielded variable results. In some cell lines FLT3 phosphorylation was inhibited and with it, downstream activation of pathways involving MAPK, AKT, and STAT5 phosphorylation. However, several cell lines actually exhibited FLT3 activation upon antibody treatment, possibly because of antibody-mediated receptor dimerization, and subsequent activation of downstream pathways. Nevertheless, through antibody-mediated cellular cytotoxicity (ADCC) such an antibody could still prove efficacious against leukemia cells in vivo. In fact, EB10 treatment significantly prolongs survival and/or reduces engraftment of ALL cell lines and primary ALL blasts in NOD/SCID mice. This effect might be even more pronounced in a host that was less immune compromised than are NOD/SCID mice. The leukemic cells surviving EB10 treatment in the mice were characterized by FACS analysis and found to express low levels or no FLT3. In contrast to the reduction in engraftment of human ALL primary blasts, EB10 treatment of NOD/SCID mice did not reduce engraftment of human hematopoietic CD34+ cells. Taken together, these data demonstrate that EB10 is selectively cytotoxic to ALL blasts while having little effect on normal hematopoiesis. Such an antibody, either naked or conjugated to radioactive isotopes or cytotoxic agents, may prove useful in the therapy of infant ALL as well as childhood and adult ALL patients whose blasts typically express FLT3.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 616-616 ◽  
Author(s):  
Deepa B. Shankar ◽  
Jenny C. Chang ◽  
Bertrand Parcells ◽  
Salemiz Sandoval ◽  
Junling Li ◽  
...  

Abstract Children with acute myeloid leukemia (AML) have less than 60% overall survival despite aggressive chemotherapy and bone marrow transplantation. Only one third of the adult patients diagnosed with AML will be cured. AML blast cells from up to 30% of patients express a constitutively active receptor tyrosine kinase, FLT3-ITD, which contains an internal tandem duplication in the juxtamembrane domain. Patients with FLT3-ITD have a worse prognosis. ABT-869 is a novel multi-targeted small molecule inhibitor of receptor tyrosine kinases and is a potent inhibitor of FLT3, c-Kit, and all members of the VEGF and PDGF receptor families. To determine the effects of ABT-896 on AML cells, we treated AML cell lines, primary cells, and tumors in xenograft models with varying concentrations of the drug. In vitro viability assays showed that ABT-869 inhibited the growth of two different cell lines, MV-4-11 (human AML cell line that expresses FLT3-ITD) and BAF3-ITD (murine B-cell line stably transfected with the FLT3-ITD) at an IC50 of 10nM. ABT-869 was also effective against another mutation of FLT3, D835V, but at higher concentrations (IC50 of 100nM). Phosphorylation of FLT3 and activation of downstream signaling molecules, STAT5 and ERK, were inhibited by ABT-869 in a concentration-dependent manner. Cells were also stained with Annexin V-FITC and Propidium Iodide, and analyzed using FACS. ABT-869 induced apoptosis, caspase-3 activation, and PARP cleavage after 48 hours. To examine the in vitro effects of ABT-869 on normal hematopoietic progenitor cells, we performed methylcellulose-based colony assays with human bone marrow. No significant difference was observed in the number and type of colonies formed using BM cells treated with ABT-869 or control, up to a concentration of 1 micromolar. These results suggest that ABT-869 is not toxic to normal bone marrow progenitor cells at concentrations that are effective against AML cells. To examine the effects of ABT-869 in vivo, we treated SCID mice injected with MV-4-11, Baf3-ITD, Baf3-D835V, or Baf3-WT cells, with oral preparations of ABT-869. Complete regression of MV-4-11 tumors was observed in mice treated with ABT-869 at 20 and 40 mg/kg/day. No adverse effects were detected in the peripheral blood counts, bone marrow, spleen or liver. Histology of the tumors from the control-treated group showed a high degree of proliferation by Ki-67 staining, increased mitotic figures, and a well-defined tumor mass. In contrast, the tumors from mice treated with ABT-869 showed a number of apoptotic bodies by TUNEL staining and the presence of reactive, inflammatory cells. Interestingly, we also observed that mice that received ABT-869 the day after injection of AML cells remained tumor-free for over 2 months in contrast to the mice receiving the vehicle alone. Inhibition of FLT3 phosphorylation was demonstrated in the tumors from mice treated with ABT-869. We are evaluating the activity of ABT-869 treatment of SCID mice injected with Baf3-ITD, Baf3-D835V, or Baf3-WT cells. NOD-SCID mouse models are currently being used to analyze the effects of ABT-869 on primary AML cells in vivo. Our preclinical studies demonstrate that ABT-869 is effective and nontoxic, and provide rationale for the treatment and prevention of relapse in AML patients.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 869-869
Author(s):  
Obdulio Piloto ◽  
Bao Nguyen ◽  
Patrick Brown ◽  
Kyu-Tae Kim ◽  
David Huso ◽  
...  

Abstract The class III receptor tyrosine kinase, FLT3, is expressed by over 90% of B-lineage acute lymphoblastic leukemias (ALL) blasts. In addition, it is expressed at extremely high levels in ALL patients with MLL-rearrangements or hyperdiploidy and sometimes mutated in these same patients. In this report, we investigated the effects of EB10, an anti-human FLT3 monoclonal antibody capable of preventing binding of FLT3 ligand (FL), on ALL cell lines and primary cells. In vitro studies, examining the ability of EB10 to inhibit FLT3 activation and downstream signaling in ALL cell lines and primary blasts, yielded variable results. In some cell lines FLT3 phosphorylation was inhibited and with it, downstream activation of pathways involving MAPK, AKT, and STAT5 phosphorylation. However, several cell lines actually exhibited FLT3 activation upon antibody treatment, possibly because of antibody-mediated receptor dimerization, and subsequent activation of downstream pathways. Nevertheless, through antibody-mediated cellular cytotoxicity (ADCC) such an antibody could still prove efficacious against leukemia cells in vivo. In fact, EB10 treatment significantly prolongs survival and/or reduces engraftment of several ALL cell lines and some primary ALL samples in NOD/SCID mice, even when EB10 treatment results in FLT3 activation of those cell lines in vitro. Moreover, FACS and PCR analysis of EB10 treated NOD/SCID mice surviving 150 days post leukemic cell injection revealed that FLT3 immunotherapy eliminated leukemic engraftment. The leukemic cells surviving EB10 treatment in the mice were characterized by FACS analysis and found to express lower levels of FLT3. To assess for resistance, cells surviving EB10 treatment were injected into NOD/SCID mice and treated with a single dose of EB10. FACS analysis revealed that these cells remain sensitive to EB10 treatment. Taken together, these data demonstrate that EB10 is cytotoxic to ALL blasts in vivo and EB10 treatment did not select for resistant clones. Such an antibody, either naked or conjugated to radioactive isotopes or cytotoxic agents, may prove useful in the therapy of infant ALL as well as childhood and adult ALL patients whose blasts typically express FLT3.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3677-3677
Author(s):  
Anne Schumacher ◽  
Till Braunschweig ◽  
Bernd Denecke ◽  
Tim H. Brümmendorf ◽  
Patrick Ziegler

Abstract The concerted action of hematopoiesis supporting cytokines such as G-CSF, GM-CSF or IL-6 regulates hematopoiesis during steady state and emergency situations. Respective knockout mice show defects both in production and function of myelopoietic effector cells. However, alternative pathways are likely to exist as mice with single or combined deficiencies for G-CSF, GM-CSF, and IL-6 or G-CSF and GM-CSF are still able to mount reactive neutrophilia responses during inflammatory conditions. In order to identify pathways for inflammation induced enhancement of hematopoiesis as well as to find new cytokines, which enhance myeloid cell regeneration, we analyzed the bone marrow (BM) of lipopolysaccharide (LPS) and vehicle injected wild type (WT) mice (single IP- injection) by gene expression microarray. Focusing on the identification of genes encoding for secreted or membrane proteins, we found 83 candidates to be up- and 14 to be downregulated after LPS treatment. Among known candiates, we found angiopoietin-like 4 (Angptl-4) as a predominantly upregulated gene in the BM of LPS-treated WT-mice. Upregulation was confirmed by RT-PCR as well as by Elisa in the BM of LPS treated mice and bone marrow stromal cells (BMSC) were identified as candidate producer cells. Functionally, we found recombinant Angptl-4 to stimulate the proliferation of myeloid colony-forming units (CFU) in vitro. In mice, repeated injections of Angptl-4 increased BM progenitor cell frequency and this was paralleled by a relative increase in phenotypically defined granulocyte-macrophage progenitors (GMPs). Furthermore, in vivo treatment with Angptl-4 resulted in elevated platelet counts both in untreated animals and after myelosuppressive therapy. After lethal irradiation and transplantation of syngeneic BM cells repetitive injections of recombinant Angptl-4 for 5 consecutive days resulted in an accelerated reconstitution of platelets starting at day 8 after transplantation. The 50% pre-treatment platelet count was reached on day 14 in Angptl-4-treated animals as compared to day 21 for transplanted controls receiving no Angptl-4 (n=8; p=0.03, student´s T test). In contrast, transplantation of BM cells from Angptl-4 pre-treated donor mice had no effect on the recovery of platelets in this setting. The frequency of CD41lowCD61+ immature megakaryocytes was significantly increased in the BM of Angptl-4 injected as compared to control mice (27% vs 19% of total megakaryocytes; p= 0.008, student´s T test). Furthermore, bone marrow cytology revealed local accumulation of megakaryocytes carrying dysplastic features in Angptl-4 injected mice. In summary, our data suggest that Angptl-4 plays a complementary role on hematopoiesis during emergency situations like sepsis. The use of Angptl-4 in the setting of autologous stem cell transplantation could represent a potential approach to accelerate the reconstitution of megakaryopoiesis. Disclosures: No relevant conflicts of interest to declare.


Leukemia ◽  
2001 ◽  
Vol 15 (8) ◽  
pp. 1240-1247 ◽  
Author(s):  
Z Hassan ◽  
M Hassan ◽  
E Hellström-Lindberg

Sign in / Sign up

Export Citation Format

Share Document