scholarly journals Reactive oxygen intermediates activate NF-kappa B in a tyrosine kinase- dependent mechanism and in combination with vanadate activate the p56lck and p59fyn tyrosine kinases in human lymphocytes

Blood ◽  
1993 ◽  
Vol 82 (4) ◽  
pp. 1212-1220 ◽  
Author(s):  
GL Schieven ◽  
JM Kirihara ◽  
DE Myers ◽  
JA Ledbetter ◽  
FM Uckun

We have previously observed that ionizing radiation induces tyrosine phosphorylation in human B-lymphocyte precursors by stimulation of unidentified tyrosine kinases and this phosphorylation is substantially augmented by vanadate. Ionizing radiation generates reactive oxygen intermediates (ROI). Because H2O2 is a potent ROI generator that readily crosses the plasma membrane, we used H2O2 to examine the effects of ROI on signal transduction. We now provide evidence that the tyrosine kinase inhibitor herbimycin A and the free radical scavenger N- acetyl-cysteine inhibit both radiation-induced and H2O2-induced activation of NF-kappa B, indicating that activation triggered by ROI is dependent on tyrosine kinase activity. H2O2 was found to stimulate Ins-1,4,5-P3 production in a tyrosine kinase-dependent manner and to induce calcium signals that were greatly augmented by vanadate. The synergistic induction of tyrosine phosphorylation by H2O2 plus vanadate included physiologically relevant proteins such as PLC gamma 1. Although treatment of cells with H2O2 alone did not affect the activity of src family kinases, treatment with H2O2 plus vanadate led to activation of the p56lck and p59fyn tyrosine kinases. The combined inhibition of phosphatases and activation of kinases provides a potent mechanism for the synergistic effects of H2O2 plus vanadate. Induction of tyrosine phosphorylation by ROI may thus lead to many of the pleiotropic effects of ROI in lymphoid cells, including downstream activation of PLC gamma 1 and NF-kappa B.

Blood ◽  
1993 ◽  
Vol 82 (4) ◽  
pp. 1212-1220 ◽  
Author(s):  
GL Schieven ◽  
JM Kirihara ◽  
DE Myers ◽  
JA Ledbetter ◽  
FM Uckun

Abstract We have previously observed that ionizing radiation induces tyrosine phosphorylation in human B-lymphocyte precursors by stimulation of unidentified tyrosine kinases and this phosphorylation is substantially augmented by vanadate. Ionizing radiation generates reactive oxygen intermediates (ROI). Because H2O2 is a potent ROI generator that readily crosses the plasma membrane, we used H2O2 to examine the effects of ROI on signal transduction. We now provide evidence that the tyrosine kinase inhibitor herbimycin A and the free radical scavenger N- acetyl-cysteine inhibit both radiation-induced and H2O2-induced activation of NF-kappa B, indicating that activation triggered by ROI is dependent on tyrosine kinase activity. H2O2 was found to stimulate Ins-1,4,5-P3 production in a tyrosine kinase-dependent manner and to induce calcium signals that were greatly augmented by vanadate. The synergistic induction of tyrosine phosphorylation by H2O2 plus vanadate included physiologically relevant proteins such as PLC gamma 1. Although treatment of cells with H2O2 alone did not affect the activity of src family kinases, treatment with H2O2 plus vanadate led to activation of the p56lck and p59fyn tyrosine kinases. The combined inhibition of phosphatases and activation of kinases provides a potent mechanism for the synergistic effects of H2O2 plus vanadate. Induction of tyrosine phosphorylation by ROI may thus lead to many of the pleiotropic effects of ROI in lymphoid cells, including downstream activation of PLC gamma 1 and NF-kappa B.


1996 ◽  
Vol 271 (3) ◽  
pp. 1455-1461 ◽  
Author(s):  
John H. Brumell ◽  
Anne L. Burkhardt ◽  
Joseph B. Bolen ◽  
Sergio Grinstein

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3541-3541
Author(s):  
Swaminathan Murugappan ◽  
Haripriya Shankar ◽  
Satya Kunapuli

Abstract Protein kinase C (PKC)-δ is a novel PKC that has been shown to be tyrosine phosphorylated upon stimulation with agonists in platelets. Tyrosine phosphorylation of PKCδ has been shown to occur in a Fyn-dependent manner downstream of glycoprotein VI (GPVI) signaling in platelets. Although thrombin causes tyrosine phosphorylation of PKCδ in platelets, the mechanism of this event is not elucidated. In this study, we investigated whether G-protein signaling pathways utilize similar pathways as GPVI in tyrosine phosphorylation of PKCδ. Protease activated receptor (PAR) -1 selective peptide, SFLLRN and PAR - 4 selective peptide, AYPGKF caused a time- and concentration-dependent increase in tyrosine phosphorylation of PKCδ in human platelets. However, AYPGKF failed to cause tyrosine phosphorylation of PKCδ in Gq-deficient mouse platelets. Both U73122, a phospholipase C (PLC) inhibitor, and dimethyl-BAPTA, an intracellular calcium chelator, inhibited the tyrosine phosphorylation of PKCδ downstream of the PAR activation suggesting a role for Gq/PLC pathways and intracellular calcium in mediating this event. Inhibition of PKC isoforms using GF109203X potentiated the tyrosine phosphorylation of PKCδ. The Src family tyrosine kinase inhibitors, PP1 and PP2 inhibited the tyrosine phosphorylation of PKCδ suggesting a role for Src family tyrosine kinase members in this event. We also found that both Lyn and Src are physically associated with PKCδ in a constitutive manner in platelets. Finally we found that there was a time-dependent activation of Src following activation of platelets with thrombin. Thus, the precomplexed Src and Lyn tyrosine kinases get activated following PAR stimulation resulting in the tyrosine phosphorylation of PKCδ. All these data indicate that tyrosine phosphorylation of PKCδ downstream of thrombin occurs in a calcium- and Src-family kinase dependent manner in human platelets.


2002 ◽  
Vol 15 (3) ◽  
pp. 195-200 ◽  
Author(s):  
A. Acharya

More than 90% of thymocytes undergo apoptosis while undergoing differentiation in the thymus. Although several factors act in concert to induce thymocyte apoptosis, it remains speculative if reactive oxygen intermediates produced by thymic macrophages may play a role in this process. The present investigation was carried out to determine if H2O2 is capable of inducing apoptosis of thymocytes in vitro. It was observed that H2O2 could induce apoptosis of thymocytes in vitro in a dose and time dependent manner. It was further found that H2O2-induced thymocyte apoptosis was dependent on the mobilization of divalent cations. The result of this study will help further in the understanding of the mechanism of H2O2 - induced apoptosis.


1999 ◽  
Vol 276 (5) ◽  
pp. C1226-C1230 ◽  
Author(s):  
Alexander A. Mongin ◽  
Jyoti M. Reddi ◽  
Carol Charniga ◽  
Harold K. Kimelberg

Volume-dependent anion channels permeable for Cl− and amino acids are thought to play an important role in the homeostasis of cell volume. Astrocytes are the main cell type in the mammalian brain showing volume perturbations under physiological and pathophysiological conditions. We investigated the involvement of tyrosine phosphorylation in hyposmotic medium-induced [3H]taurine andd-[3H]aspartate release from primary astrocyte cultures. The tyrosine kinase inhibitors tyrphostin 23 and tyrphostin A51 partially suppressed the volume-dependent release of [3H]taurine in a dose-dependent manner with half-maximal effects at ∼40 and 1 μM, respectively. In contrast, the release ofd-[3H]aspartate was not significantly affected by these agents in the same concentration range. The inactive analog tyrphostin 1 had no significant effect on the release of both amino acids. The data obtained suggest the existence of at least two volume-dependent anion channels permeable to amino acids in astrocyte cultures. One of these channels is permeable to taurine and is under the control of tyrosine kinase(s). The other is permeable to both taurine and aspartate, but its volume-dependent regulation does not require tyrosine phosphorylation.


Biochemistry ◽  
1992 ◽  
Vol 31 (35) ◽  
pp. 8300-8306 ◽  
Author(s):  
Rakesh Datta ◽  
Dennis E. Hallahan ◽  
Surender M. Kharbanda ◽  
Eric Rubin ◽  
Matthew L. Sherman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document