scholarly journals Synthesis of interleukin-5 by activated eosinophils in patients with eosinophilic heart diseases

Blood ◽  
1993 ◽  
Vol 82 (5) ◽  
pp. 1553-1560 ◽  
Author(s):  
P Desreumaux ◽  
A Janin ◽  
S Dubucquoi ◽  
MC Copin ◽  
G Torpier ◽  
...  

Abstract Eosinophilic endomyocardial disease represents a major evolutive risk in chronic eosinophilia-associated disorders. Eosinophil granule proteins appear to be involved in cardiac injury, but the mechanisms leading to eosinophil infiltration and degranulation are not clear. Interleukin-5 (IL-5) has been recently shown to be produced by eosinophils and might play a role in both chemoattraction and degranulation of eosinophils. In four cases of eosinophilic diseases with severe cardiac failure, we evaluated the proportion of eosinophil phenotypes and the serum levels of eosinophil cationic protein (ECP) and soluble IL-2 receptor (sIL-2R), markers of disease activity in the hypereosinophilic syndromes. All four patients showed a markedly increased proportion of hypodense eosinophils with elevated serum ECP and sIL-2R levels. In all four patients, extracellular deposition of eosinophil granule proteins and features of eosinophil activation were observed in cardiac tissues. The synthesis of IL-5 by eosinophils was detected in myocardial sections and blood cells by in situ hybridization and by immunostaining with a monoclonal antibody against human IL-5. Sixty percent to 90% of tissue eosinophils expressed IL-5 mRNA and IL-5 protein. These data suggest that IL-5 can be produced by eosinophils at the sites of myocardial tissue damage and might participate in local eosinophil activation.

Blood ◽  
1993 ◽  
Vol 82 (5) ◽  
pp. 1553-1560 ◽  
Author(s):  
P Desreumaux ◽  
A Janin ◽  
S Dubucquoi ◽  
MC Copin ◽  
G Torpier ◽  
...  

Eosinophilic endomyocardial disease represents a major evolutive risk in chronic eosinophilia-associated disorders. Eosinophil granule proteins appear to be involved in cardiac injury, but the mechanisms leading to eosinophil infiltration and degranulation are not clear. Interleukin-5 (IL-5) has been recently shown to be produced by eosinophils and might play a role in both chemoattraction and degranulation of eosinophils. In four cases of eosinophilic diseases with severe cardiac failure, we evaluated the proportion of eosinophil phenotypes and the serum levels of eosinophil cationic protein (ECP) and soluble IL-2 receptor (sIL-2R), markers of disease activity in the hypereosinophilic syndromes. All four patients showed a markedly increased proportion of hypodense eosinophils with elevated serum ECP and sIL-2R levels. In all four patients, extracellular deposition of eosinophil granule proteins and features of eosinophil activation were observed in cardiac tissues. The synthesis of IL-5 by eosinophils was detected in myocardial sections and blood cells by in situ hybridization and by immunostaining with a monoclonal antibody against human IL-5. Sixty percent to 90% of tissue eosinophils expressed IL-5 mRNA and IL-5 protein. These data suggest that IL-5 can be produced by eosinophils at the sites of myocardial tissue damage and might participate in local eosinophil activation.


2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Masato Muraki ◽  
Hirohito Kita ◽  
Gerald J. Gleich

Abstract Background Eosinophils play an important role in allergic inflammation. Glucocorticosteroids have been used as an anti-inflammatory medication for inflammatory diseases involving eosinophil infiltration. Some effect of nebulized lidocaine has been reported when treating certain patients with asthma, which is also an inflammatory disease. The goal of this study was to examine the effects of dexamethasone and lidocaine on eosinophil proliferation and differentiation using a model of human umbilical cord blood mononuclear cells (UCMC) cultured with IL-5. Methods UCMC were cultured with IL-5 (5 ng/mL) for 4 weeks. The effects of dexamethasone and lidocaine on the number and morphology of eosinophilic cells were visualized with Wright-Giemsa and cyanide-resistant peroxidase stains. Moreover, the effect on eosinophil-derived neurotoxin (EDN) and eosinophil peroxidase (EPX) contents in cultured cells were evaluated using radioimmunoassay. Results The number of eosinophilic cells and EDN and EPX content in cultured cells increased in a time-dependent manner in the presence of IL-5. Dexamethasone treatment slightly decreased the number of eosinophilic cells in one week, but this effect was lost in 2–4 weeks. Macrophages in cultured UCMC treated with dexamethasone contained more eosinophil granule proteins. Both EDN and EPX content in cultured cells were reduced by dexamethasone. Lidocaine decreased the number of eosinophilic cells and reduced both EDN and EPX contents in cultured cells. Conclusions Dexamethasone suppressed the production of eosinophil granule proteins and may also induce apoptosis of eosinophils, while lidocaine suppresses eosinophilopoiesis.


2001 ◽  
Vol 91 (3) ◽  
pp. 1318-1326 ◽  
Author(s):  
Lu-Yuan Lee ◽  
Qihai Gu ◽  
Gerald J. Gleich

Experiments were performed to test the hypothesis that human eosinophil granule-derived cationic proteins stimulate vagal C-fiber afferents in the lungs and elicit pulmonary chemoreflex responses in anesthetized Sprague-Dawley rats. Intratracheal instillation of eosinophil cationic protein (ECP; 1–2 mg/ml, 0.1 ml) consistently induced an irregular breathing pattern, characterized by tachypnea (change in breathing frequency of 44.7%) and small unstable tidal volume (Vt). The tachypnea, accompanied by decreased heart rate and arterial blood pressure, started within 30 s after the delivery of ECP and lasted for >30 min. These ECP-induced cardiorespiratory responses were completely prevented by perineural capsaicin treatment of both cervical vagi, which selectively blocked C-fiber conduction, suggesting the involvement of these afferents. Indeed, direct recording of single-unit activities of pulmonary C-fibers further demonstrated that the same dose of ECP evoked a pronounced and sustained (>30-min) stimulatory effect on pulmonary C-fibers. Furthermore, the sensitivity of these afferents to lung inflation was also markedly elevated after the ECP instillation, whereas the vehicle of ECP administered in the same manner had no effect. Other types of eosinophil granule cationic proteins, such as major basic protein and eosinophil peroxidase, induced very similar respiratory and cardiovascular reflex responses. In conclusion, these results show that eosinophil granule-derived cationic proteins induce a distinct stimulatory effect on vagal pulmonary C-fiber endings, which may play an important role in the airway hyperresponsiveness associated with eosinophil infiltration in the airways.


1998 ◽  
Vol 188 (3) ◽  
pp. 421-429 ◽  
Author(s):  
Konrad Pazdrak ◽  
Barbara Olszewska-Pazdrak ◽  
Susan Stafford ◽  
Roberto P. Garofalo ◽  
Rafeul Alam

Interleukin (IL)-5 has been shown to activate many signaling molecules in eosinophils, but their functional relevance remains unknown. We have examined the functional relevance of Lyn, Jak2, and Raf-1 kinases in eosinophil survival, upregulation of adhesion molecules and degranulation. To this goal we used Lyn and Raf-1 antisense (AS) oligodeoxynucleotides (ODN) to inhibit the expression of these proteins and tyrphostin AG490 to specifically block the activation of Jak2. We have demonstrated that all three kinases are important for IL-5– induced suppression of eosinophil apoptosis. However, Lyn and Jak2 tyrosine kinases are not important for the upregulation of CD11b and the secretion of eosinophil cationic protein. In contrast, Raf-1 kinase is critical for both these functions. This is the first identification of specific signaling molecules responsible for three important functions of eosinophils. We have established a central role for Raf-1 kinase in regulating eosinophil survival, expression of β2 integrins and degranulation. Further, there appears to be a dissociation between two receptor-associated tyrosine kinases, i.e., Lyn and Jak2, and the activation of Raf-1 kinase. The delineation of the functional relevance of signaling molecules will help design therapeutic approaches targeting specific eosinophil function.


Blood ◽  
1996 ◽  
Vol 87 (6) ◽  
pp. 2354-2360 ◽  
Author(s):  
D Aldebert ◽  
B Lamkhioued ◽  
C Desaint ◽  
AS Gounni ◽  
M Goldman ◽  
...  

Recent reports describe the beneficial use of alpha interferon (IFNalpha) for the treatment of idiopathic hypereosinophilic syndrome (HES) unresponsive to conventional therapy. A clinical improvement associated with a rapid decrease of peripheral blood eosinophilia suggested possible direct effects of IFNalpha on eosinophils through the presence of IFNalpha receptors (IFNalphaR). Reverse transcriptase- polymerase chain reaction (RT-PCR) and cytochemistry were used respectively to detect the presence and define the distribution of IFNalphaR on enriched eosinophil preparations purified from blood cells. IFNalphaR was found on eosinophils collected from patients with various eosinophilic disorders. In addition, IFNalpha inhibited the release of eosinophil granule proteins such as eosinophil cationic protein (ECP), neurotoxin (EDN, or interleukin-5 (IL-5). Moreover, antiparasite cytotoxicity was also strongly reduced in a dose-dependent manner by IFNalpha. These results provide the first evidence that human eosinophils express a functional receptor for IFNalpha and represent a potential basis for the beneficial effects of IFNalpha in patients with hypereosinophilic syndromes.


2020 ◽  
Author(s):  
Masato Muraki ◽  
Hirohito Kita ◽  
Gerald J Gleich

Abstract Background: Eosinophils play an important role in allergic inflammation. Glucocorticosteroids have been used as an anti-inflammatory medication for inflammatory diseases involving eosinophil infiltration. Some effect of nebulized lidocaine has been reported when treating certain patients with asthma, which is also an inflammatory disease. The goal of this study was to examine the effects of dexamethasone and lidocaine on eosinophil proliferation and differentiation using a model of human umbilical cord blood mononuclear cells (UCMC) cultured with IL-5. Methods: UCMC were cultured with IL-5 (5 ng/mL) for 4 weeks. The effects of dexamethasone and lidocaine on the number and morphology of eosinophilic cells were visualized with Wright-Giemsa and cyanide-resistant peroxidase stains. Moreover, the effect on eosinophil-derived neurotoxin (EDN) and eosinophil peroxidase (EPX) contents in cultured cells were evaluated using radioimmunoassay.Results: The number of eosinophilic cells and EDN and EPX content in cultured cells increased in a time-dependent manner in the presence of IL-5. Dexamethasone treatment slightly decreased the number of eosinophilic cells in one week, but this effect was lost in 2–4 weeks. Macrophages in cultured UCMC treated with dexamethasone contained more eosinophil granule proteins. Both EDN and EPX content in cultured cells were reduced by dexamethasone. Lidocaine decreased the number of eosinophilic cells and reduced both EDN and EPX contents in cultured cells.Conclusions: Dexamethasone suppressed the production of eosinophil granule proteins and may also induce apoptosis of eosinophils, while lidocaine suppresses eosinophilopoiesis.


2020 ◽  
Vol 71 (10) ◽  
pp. e580-e586 ◽  
Author(s):  
Eva Clark ◽  
Haley Pritchard ◽  
Vagish Hemmige ◽  
Alejandro Restrepo ◽  
Karla Bautista ◽  
...  

Abstract Background Strongyloidiasis can cause devastating morbidity and death in immunosuppressed patients. Identification of reliable biomarkers for strongyloidiasis in immunosuppressed patients is critical for the prevention of severe disease. Methods In this cross-sectional study of solid organ transplant (SOT) candidates and recipients, we quantified Strongyloides-specific IgG to the recombinant NIE-Strongyloides antigen and/or to a soluble extract of S. stercoralis somatic antigens (“crude antigen”) using enzyme-linked immunosorbent assays (ELISAs). We also measured peripheral eosinophilia, 4 different eosinophil granule proteins, and intestinal fatty acid–binding protein (IFABP). Results We evaluated serum biomarkers in 149 individuals; 77 (52%) pre-SOT and 72 (48%) post-SOT. Four percent (6/149) tested positive by NIE ELISA and 9.6% (11/114) by crude antigen ELISA (overall seropositivity of 9.4% [14/149]). Seropositive patients had higher absolute eosinophil counts (AECs) than seronegative patients (P = .004). AEC was positively correlated to the levels of eosinophil granule proteins eosinophil cationic protein (ECP) and eosinophil peroxidase (EPO) (P < .05), while IFABP was positively related to the 2 other eosinophil granule proteins (major basic protein [MBP] and eosinophil-derived neurotoxin [EDN]; Spearman’s r = 0.3090 and 0.3778, respectively; P < .05; multivariate analyses slopes = 0.70 and 2.83, respectively). Conclusions This study suggests that, in SOT patients, strongyloidiasis triggers both eosinophilia and eosinophil activation, the latter being associated with intestinal inflammation. These data provide insight into the pathogenesis of S. stercoralis infection in the immunocompromised population at high risk of severe strongyloidiasis syndromes.


Sign in / Sign up

Export Citation Format

Share Document