scholarly journals Abnormal lymphokine production: a novel feature of the genetic disease Fanconi anemia. II. In vitro and in vivo spontaneous overproduction of tumor necrosis factor alpha

Blood ◽  
1994 ◽  
Vol 83 (5) ◽  
pp. 1216-1225 ◽  
Author(s):  
F Rosselli ◽  
J Sanceau ◽  
E Gluckman ◽  
J Wietzerbin ◽  
E Moustacchi

Abstract We have previously shown an unbalanced cytokine production in Fanconi anemia (FA) cells, ie, an underproduction of interleukin 6 (IL-6) during growth. Among a number of cytokines analyzed, the only other anomalies detected concern tumor necrosis factor alpha (TNF alpha). In comparison to normal cells, this cytokine is overproduced by FA lymphoblasts from the four genetic complementation groups. Indeed, up to an eight-fold increase in TNF alpha is observed in the growth medium of FA cells. Moreover, addition of anti-TNF alpha antibodies partially corrects the FA hypersensitivity to treatment by mitomycin C (MMC). Treatment of FA cells with IL-6, which partially restored an almost normal sensitivity to MMC of FA cells also reduces the TNF alpha overproduction in FA lymphoblasts. No anomalies at the molecular level (Southern and Northern blot analyses) are detected for the TNF alpha gene and its mRNA. We have investigated the in vivo situation by assaying TNF alpha levels in the serum from FA homozygotes and obligate heterozygotes. In contrast to normal healthy donors or to aplastic anemia patients in whom serum TNF alpha is present only in trace amounts, all 36 FA patients and 21 FA parents monitored show a significantly (P < .001) higher level of serum TNF alpha activity. Consequently, abnormal TNF alpha production seems to be associated with the FA genetic background.

Blood ◽  
1994 ◽  
Vol 83 (5) ◽  
pp. 1216-1225 ◽  
Author(s):  
F Rosselli ◽  
J Sanceau ◽  
E Gluckman ◽  
J Wietzerbin ◽  
E Moustacchi

We have previously shown an unbalanced cytokine production in Fanconi anemia (FA) cells, ie, an underproduction of interleukin 6 (IL-6) during growth. Among a number of cytokines analyzed, the only other anomalies detected concern tumor necrosis factor alpha (TNF alpha). In comparison to normal cells, this cytokine is overproduced by FA lymphoblasts from the four genetic complementation groups. Indeed, up to an eight-fold increase in TNF alpha is observed in the growth medium of FA cells. Moreover, addition of anti-TNF alpha antibodies partially corrects the FA hypersensitivity to treatment by mitomycin C (MMC). Treatment of FA cells with IL-6, which partially restored an almost normal sensitivity to MMC of FA cells also reduces the TNF alpha overproduction in FA lymphoblasts. No anomalies at the molecular level (Southern and Northern blot analyses) are detected for the TNF alpha gene and its mRNA. We have investigated the in vivo situation by assaying TNF alpha levels in the serum from FA homozygotes and obligate heterozygotes. In contrast to normal healthy donors or to aplastic anemia patients in whom serum TNF alpha is present only in trace amounts, all 36 FA patients and 21 FA parents monitored show a significantly (P < .001) higher level of serum TNF alpha activity. Consequently, abnormal TNF alpha production seems to be associated with the FA genetic background.


1992 ◽  
Vol 263 (3) ◽  
pp. R708-R715 ◽  
Author(s):  
L. Kapas ◽  
L. Hong ◽  
A. B. Cady ◽  
M. R. Opp ◽  
A. E. Postlethwaite ◽  
...  

Exogenously administered tumor necrosis factor-alpha (TNF-alpha) elicits several symptoms of generalized infections such as fever, increased sleep, and anorexia. The aim of the present work was to localize these effects of TNF-alpha to specific amino acid sequences of the parent molecule by characterizing the in vivo and in vitro activities of several synthetic TNF-alpha fragments. Intracerebroventricular injection of TNF-alpha elicited dose-dependent fevers and increases in non-rapid-eye-movement sleep (NREMS) in rabbits. Four fragments also promoted NREMS and five elicited monophasic fevers. All of the somnogenic fragments share the amino acid sequence 31-36. In rats, TNF-alpha and one of the fragments [TNF-alpha-(69-100)] suppressed 12-h food intake. Furthermore, TNF-alpha increased the expression of the intercellular adhesion molecule-1 and enhanced interferon-gamma-induced HLA-DR expression in human glioblastoma cell line. In contrast, none of the fragments possessed these in vitro activities. Our in vivo results support the concept that there are biologically active regions in the TNF-alpha molecule.


1991 ◽  
Vol 173 (3) ◽  
pp. 699-703 ◽  
Author(s):  
E P Sampaio ◽  
E N Sarno ◽  
R Galilly ◽  
Z A Cohn ◽  
G Kaplan

Thalidomide selectively inhibits the production of human monocyte tumor necrosis factor alpha (TNF-alpha) when these cells are triggered with lipopolysaccharide and other agonists in culture. 40% inhibition occurs at the clinically achievable dose of the drug of 1 micrograms/ml. In contrast, the amount of total protein and individual proteins labeled with [35S]methionine and expressed on SDS-PAGE are not influenced. The amounts of interleukin 1 beta (IL-1 beta), IL-6, and granulocyte/macrophage colony-stimulating factor produced by monocytes remain unaltered. The selectivity of this drug may be useful in determining the role of TNF-alpha in vivo and modulating its toxic effects in a clinical setting.


Blood ◽  
1988 ◽  
Vol 72 (6) ◽  
pp. 1875-1883 ◽  
Author(s):  
CS Johnson ◽  
MJ Chang ◽  
P Furmanski

Abstract The effects of recombinant, macrophage-derived, murine tumor necrosis factor-alpha (TNF-alpha) on hematopoiesis in vivo has been examined in normal mice and in Friend virus (FV)-induced erythroleukemic mice. Intravenous (IV) administration of a single dose of recombinant murine TNF-alpha (10(5) U per mouse) significantly suppressed normal and leukemic late-stage erythropoiesis as measured by numbers of mature erythroid colony forming cells (CFU-E) in the bone marrow and spleen and by peripheral blood reticulocyte counts. In normal animals, the immature erythroid (BFU-E), macrophage (CFU-M), and granulocyte- macrophage (CFU-GM) compartments were significantly stimulated by TNF- alpha in both the bone marrow and the spleen. In the bone marrow of leukemic mice, the BFU-E, CFU-GM, and CFU-M progenitor cell compartments were also stimulated by treatment with the monokine. In the spleens of leukemic mice (the primary site of FV leukemia cell accumulation), relative numbers of BFU-E and CFU-GM were increased by TNF-alpha, while those of CFU-M were suppressed. TNF-alpha caused a rapid decrease in the markedly elevated spleen weights of progressively leukemic mice, and in multiple doses it caused complete clinical disease regression in a significant percentage of leukemic animals. The combination of TNF-alpha with interferon-gamma (IFN-gamma) increased the incidence of leukemia regression, compared with TNF-alpha alone. These results show that TNF-alpha exerts a suppressive influence on late-stage erythropoiesis in vivo and suggest that this effect might be exploited in the treatment of acute erythroleukemia, erythroid hyperplasias, and related diseases.


2002 ◽  
Vol 70 (12) ◽  
pp. 6628-6637 ◽  
Author(s):  
Christopher J. Papasian ◽  
Richard Silverstein ◽  
Jian Jun Gao ◽  
David M. Bamberger ◽  
David C. Morrison

ABSTRACT The murine d-galactosamine (d-gal) model of tumor necrosis factor alpha (TNF-α) hypersensitization was used as an initial tool to investigate the potential contribution of TNF-α to lethal intraperitoneal (i.p.) infection with Enterococcus faecalis. d-gal sensitized mice to lethal E. faecalis infection, whereas dexamethasone and neutralizing anti-TNF-α antibody protected d-gal-treated, E. faecalis-infected mice, implicating TNF-α in the lethal response to E. faecalis infection in d-gal-treated mice. Circulating TNF-α was undetectable for at least 8 h following i.p. E. faecalis infection, although low peritoneal levels of TNF-α were detected within 3 h, suggesting that localized TNF-α production contributed to the lethal response to E. faecalis infection in d-gal-treated mice. Although i.p. E. faecalis infection failed to induce a detectable systemic TNF-α response, circulating Interleukin-6 (IL-6) was detected within 3 h of infection. IL-6 was also detected in the peritoneum within an hour of infection, prior to the appearance of peritoneal TNF-α. In striking contrast to in vivo results, E. faecalis induced a potent and rapid TNF-α response from both mouse peritoneal macrophages and the RAW 264.7 cell line in vitro. This led us to hypothesize that TNF-α production in response to E. faecalis infection is suppressed by IL-6 in vivo. In vitro experiments demonstrated a statistically significant, but modest, inhibitory effect of IL-6 on TNF-α production by RAW cells stimulated with E. faecalis. Collectively, these data indicate that acute, lethal E. faecalis infection appears to induce an unusual cytokine response that differs in character from that previously described for most other gram-positive and gram-negative bacteria.


Sign in / Sign up

Export Citation Format

Share Document