scholarly journals Neoplastic transformation of normal hematopoietic cells by constitutively activating mutations of c-kit receptor tyrosine kinase

Blood ◽  
1996 ◽  
Vol 88 (3) ◽  
pp. 995-1004 ◽  
Author(s):  
H Kitayama ◽  
T Tsujimura ◽  
I Matsumura ◽  
K Oritani ◽  
H Ikeda ◽  
...  

Abstract The c-kit proto-oncogene encodes a receptor tyrosine kinase that is crucial to hematopoiesis, melanogenesis, and gametogeneis. Although the enzymatic activity of the c-kit product (KIT) is regulated by its ligand, both the Val559-->Gly (G559) mutation in the juxtamembrane domain and the Asp814-->Val (V814) mutation in the phosphotransferase domain lead to constitutive activation of KIT. By retroviral infection of hematopoietic progenitor cells with KIT(G559) or KIT(V814), KIT(G559) induced development of granulocyte/macrophage and mast-cell colonies in vitro without the addition of exogenous growth factors. KIT(V814) induced factor-independent growth of various types of hematopoietic progenitor cells, resulting in the development of mixed erythroid/myeloid colonies in addition to granulocyte/macrophage and mast-cell colonies. Furthermore, transplantation of KIT(G559) and KIT(V814)-infected bone marrow cells led to development of acute leukemia in one of 10 and six of 10 transplanted mice, respectively. No mice developed hematologic malignancies after transplantation of wild- type KIT-infected cells. Furthermore, transgenic mice expressing KIT(V814) developed acute leukemia or malignant lymphoma. These results demonstrate a direct role of the mutant KITs, particularly KIT(V814), in tumorigenesis of hematopoietic cells and suggest that similar mutations may contribute to the development of human hematologic malignancies.

Blood ◽  
1996 ◽  
Vol 88 (3) ◽  
pp. 995-1004 ◽  
Author(s):  
H Kitayama ◽  
T Tsujimura ◽  
I Matsumura ◽  
K Oritani ◽  
H Ikeda ◽  
...  

The c-kit proto-oncogene encodes a receptor tyrosine kinase that is crucial to hematopoiesis, melanogenesis, and gametogeneis. Although the enzymatic activity of the c-kit product (KIT) is regulated by its ligand, both the Val559-->Gly (G559) mutation in the juxtamembrane domain and the Asp814-->Val (V814) mutation in the phosphotransferase domain lead to constitutive activation of KIT. By retroviral infection of hematopoietic progenitor cells with KIT(G559) or KIT(V814), KIT(G559) induced development of granulocyte/macrophage and mast-cell colonies in vitro without the addition of exogenous growth factors. KIT(V814) induced factor-independent growth of various types of hematopoietic progenitor cells, resulting in the development of mixed erythroid/myeloid colonies in addition to granulocyte/macrophage and mast-cell colonies. Furthermore, transplantation of KIT(G559) and KIT(V814)-infected bone marrow cells led to development of acute leukemia in one of 10 and six of 10 transplanted mice, respectively. No mice developed hematologic malignancies after transplantation of wild- type KIT-infected cells. Furthermore, transgenic mice expressing KIT(V814) developed acute leukemia or malignant lymphoma. These results demonstrate a direct role of the mutant KITs, particularly KIT(V814), in tumorigenesis of hematopoietic cells and suggest that similar mutations may contribute to the development of human hematologic malignancies.


Blood ◽  
1996 ◽  
Vol 87 (6) ◽  
pp. 2212-2220 ◽  
Author(s):  
P Batard ◽  
P Sansilvestri ◽  
C Scheinecker ◽  
W Knapp ◽  
N Debili ◽  
...  

Growth factor receptors in human hematopoietic progenitor cells have become the focus of intense interest, because they may provide tools for the monitoring, enrichment, and expansion of stem cells. We have shown earlier that the Tie receptor tyrosine kinase is expressed in erythroid and megakaryoblastic human leukemia cell lines, in the blood islands of the yolk sac, and in endothelial cells starting from day 8.0 of mouse development. Here, the expression of Tie was studied in human hematopoietic cells of various sources. Peripheral blood mononuclear cells were Tie-. However, a large fraction of CD34+ cells from umbilical cord blood (UCB) and bone marrow (BM) expressed tie protein and mRNA. On average, 64% of the fluorescence-activated cell sorting- gated UCB CD34+ cells including CD38- cells and a fraction of cells expressing low levels of c-Kit were Tie+. Also, 30% to 60% of BM CD34+ cells were Tie+, including most of the BM CD34+CD38-, CD34+Thy-1+, and CD34+HLA-DR- cells. Under culture conditions allowing myeloid, erythroid, and/or megakaryocytic differentiation, purified UCB CD34+ cells lost Tie mRNA and protein expression concomitantly with that of CD34; however, a significant fraction of cells expressed Tie during megakaryocytic differentiation. These data suggest that, in humans, the Tie receptor and presumably its ligand may function at an early stage of hematopoietic cell differentiation.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 526-526
Author(s):  
Tuoen Liu ◽  
Kilannin Krysiak ◽  
Cara Lunn Shirai ◽  
Matthew Ndonwi ◽  
Matthew J. Walter

Abstract HSPA9, a gene located on chromosome 5q31.2, is commonly deleted in patients with myelodysplastic syndromes (MDS). MDS patients with a deletion of the long arm of chromosome 5 [del(5q)] typically present with cytopenias, including anemia, and have increased levels of apoptosis in their bone marrow contributing to ineffective hematopoiesis. Recent evidence suggests that upregulation of TP53 in MDS bone marrow cells may contribute to the cytopenias and accererated apoptosis observed in patients. While the mechanisms of TP53 activation in MDS are likely to be multifactorial, gene haploinsufficiency has been shown to contribute. Previous reports have shown that knockdown of RPS14, a chromosome 5q33.1 gene, in human CD34+ cells (or heterozygous knockout in mouse bone marrow cells) results in upregulation of TP53 and an increase in apoptosis. It is not known whether additional del(5q) candidate genes contribute to TP53 activation in del(5q)-associated MDS. In order to determine whether HSPA9 gene deletion also results in TP53 activation, we used lentiviral shRNA vectors to knockdown the expression of HSPA9 in primary human CD34+ hematopoietic progenitor cells. The HSPA9 protein level was reduced to ~20% (sh960) and ~50% (sh433) compared to the control lentiviral shRNA (shGFP). Knockdown of HSPA9 significantly inhibited the growth (fold change sh960 compared to shGFP = 0.16, p<0.01; sh433 compared to shGFP = 0.39, p=0.06, N=3) and erythroid differentiation (CD71+ expression fold change sh960 compared to shGFP =0.26, p<0.001; sh433 compared to shGFP = 0.52, p<0.01, N=3) of human CD34+ cells grown in media promoting erythroid differentiation after 7 days in culture. In addition, knockdown of HSPA9 by sh960 significantly increased apoptosis (AnnexinV+ cells) in CD34+ cells compared to shGFP (fold change = 2, p<0.01, N=3). The increased apoptosis observed following HSPA9 knockdown was associated with increased TP53 expression (fold change sh960 compared to shGFP = 2 by intracellular flow cytometry, p<0.05, N=3), TP53 activity (sh960 compared to shGFP, p<0.05; sh433 compared to shGFP, p=0.06 by TP53 luciferase reporter assay), and increased mRNA expression of the pro-apoptotic TP53 target gene BAX (fold change sh960 compared to shGFP = 1.8 by Q-RT-PCR, p<0.05). Gene expression profiling of CD34+ cells transduced with sh433 vs. control knockdown revealed that 26 well-annotated TP53-induced genes are also expressed higher in HSPA9 knockdown cells compared to controls by gene set enrichment (FWER p=0.01), further implicating TP53 activation in HSPA9 knockdown cells. We show that treatment of primary human CD34+ cells with MKT-077, a rhodacyanine dye with inhibitory effects on HSPA9 protein by binding to its nucleotide binding domain, also results in dose-dependent growth inhibition, enhanced apoptosis, and reduced erythroid differentiation, similar to that observed following HSPA9 knockdown. HSPA9 has been shown to physically interact with TP53 in the cytoplasm, and knockdown of HSPA9 changes localization of TP53 from the cytoplasm to the nucleus in non-hematopoietic cells. The loss of cytoplasmic sequestration of TP53 by HSPA9 following HSPA9 knockdown is thought to contribute to many of the cellular phenotypes induced by HSPA9 knockdown. We show by immunoprecipitation that HSPA9 also interacts with TP53 in primary human CD34+ cells, providing a possible mechanism for regulation of TP53 by HSPA9 in hematopoietic cells. These findings indicate that HSPA9 knockdown may contribute to TP53 activation and increased apoptosis observed in del(5q)-associated MDS. The data also suggest that genetic (i.e., mutation or deletion) or functional inactivation of TP53 may be necessary for disease progression to occur in MDS patients with del(5q). Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 119 (8) ◽  
pp. 1904-1914 ◽  
Author(s):  
Hongfeng Yuan ◽  
Zhiqiang Wang ◽  
Ling Li ◽  
Hao Zhang ◽  
Hardik Modi ◽  
...  

Abstract The tyrosine kinase inhibitor imatinib is highly effective in the treatment of chronic myelogenous leukemia (CML), but primary and acquired resistance of CML cells to the drug offset its efficacy. Molecular mechanisms for resistance of CML to tyrosine kinase inhibitors are not fully understood. In the present study, we show that BCR-ABL activates the expression of the mammalian stress response gene SIRT1 in hematopoietic progenitor cells and that this involves STAT5 signaling. SIRT1 activation promotes CML cell survival and proliferation associated with deacetylation of multiple SIRT1 substrates, including FOXO1, p53, and Ku70. Imatinib-mediated inhibition of BCR-ABL kinase activity partially reduces SIRT1 expression and SIRT1 inhibition further sensitizes CML cells to imatinib-induced apoptosis. Knockout of SIRT1 suppresses BCR-ABL transformation of mouse BM cells and the development of a CML-like myeloproliferative disease, and treatment of mice with the SIRT1 inhibitor tenovin-6 deters disease progression. The combination of SIRT1 gene knockout and imatinib treatment further extends the survival of CML mice. Our results suggest that SIRT1 is a novel survival pathway activated by BCR-ABL expression in hematopoietic progenitor cells, which promotes oncogenic transformation and leukemogenesis. Our findings suggest further exploration of SIRT1 as a therapeutic target for CML treatment to overcome resistance.


Author(s):  
A. M. Goltsev ◽  
T. G. Dubrava ◽  
Yu. O. Gaevska ◽  
N. M. Babenko ◽  
M. O. Bondarovych ◽  
...  

Background. Previously, the antitumor activity of nanocomplexes (NCs) containing nanoparticles of rare earth metal orthovanadates GdYEuVO4 and cholesterol has been approved when applied in 9:1 ratio (the cells-to-NCs), which can be considered as a conditionally therapeutic dose. Therefore, studying the potential risks of NCs exposure in terms of functional activity of hematopoietic progenitor cells is relevant. Рurpose – determining a toxic effect of NCs on functional activity of hematopoietic cells of bone marrow (BM). Materials and Methods. The study was performed in BM cells of CBA/H mice. Nanocomplexes were synthesized at Institute for Scintillation Materials of the National Academy of Sciences of Ukraine. BM cells with NCs were incubated in the ratios as follows: 9BM:1NCs; 1BM:1NCs; 1BM:9NCs, followed by assessing the number of apoptotic/necrotic cells in BM using FITC Annexin V Apoptosis Detection Kit I (BD, USA) by means of “FACS Calibur” flow cytometer (“BD”, USA). Hematopoietic progenitor cells of BM were functionally evaluated in vivo by determining the content of colony-forming units of the spleen (CFUs) and the number of myelokaryocytes in lethally irradiated recipients on day 8 after administering BM cells, pre-incubated with NCs. Survival of irradiated recipient mice after BM administration was recorded 12 days long. Results and discussion. The dose-dependent effect of functional potential in- hibition for BM hematopoietic progenitor cells under NCs influence has been established. Although, in vitro processing the BM cells with a conditionally therapeutic dose of NCs (9BM:1NCs) before administration to irradiated animal caused remodeling of cell membranes and contributed to apoptotic manifes- tations, but it did not lead to strong changes in their colony-forming potential and did not reduce the number of BM cells in animals if compared with the introduced BM cells without NCs treatment. Increasing the NCs concentration five- and tenfold significantly reduced the colony-forming potential of BM cells, caused BM hypoplasia and a crucial reduction in the survival of recipient animals, indicating possible toxic effects of this compound when administered at high concentrations. Conclusions. The toxic effect of NCs is detected only when certain concen- trations, significantly exceeding the conditionally therapeutic dose previously determined when treating the experimental oncology diseases, are used.


Blood ◽  
1993 ◽  
Vol 82 (5) ◽  
pp. 1436-1444 ◽  
Author(s):  
Y Shiota ◽  
JG Wilson ◽  
K Harjes ◽  
ED Zanjani ◽  
M Tavassoli

Abstract The adhesion of hematopoietic progenitor cells to bone marrow stromal cells is critical to hematopoiesis and involves multiple effector molecules. Stromal cell molecules that participate in this interaction were sought by analyzing the detergent-soluble membrane proteins of GBI/6 stromal cells that could be adsorbed by intact FDCP-1 progenitor cells. A single-chain protein from GBI/6 cells having an apparent molecular weight of 37 Kd was selectively adsorbed by FDCP-1 cells. This protein, designated p37, could be surface-radiolabeled and thus appeared to be exposed on the cell membrane. An apparently identical 37- Kd protein was expressed by three stromal cell lines, by Swiss 3T3 fibroblastic cells, and by FDCP-1 and FDCP-2 progenitor cells. p37 was selectively adsorbed from membrane lysates by a variety of murine hematopoietic cells, including erythrocytes, but not by human erythrocytes. Binding of p37 to cells was calcium-dependent, and was not affected by inhibitors of the hematopoietic homing receptor or the cell-binding or heparin-binding functions of fibronectin. It is proposed that p37 may be a novel adhesive molecule expressed on the surface of a variety of hematopoietic cells that could participate in both homotypic and heterotypic interactions of stromal and progenitor cells.


Blood ◽  
1988 ◽  
Vol 71 (3) ◽  
pp. 717-722 ◽  
Author(s):  
MA Eglitis ◽  
PW Kantoff ◽  
JD Jolly ◽  
JB Jones ◽  
WF Anderson ◽  
...  

Abstract The Moloney murine leukemia retrovirus-derived vector N2 was used to transfer the bacterial NeoR gene (conferring resistance to the neomycin analogue G418) into hematopoietic progenitor cells. Approximately 5% of day seven CFU-GM were resistant to 2,000 micrograms/ml G418, using a supernatant infection protocol in the absence of vector-producing cells. A greater proportion of CFU-GM colonies were recovered relative to uninfected controls as the stringency of selection was diminished. Enzyme activity was detected in drug-resistant colonies, confirming that the resistant colonies obtained after infection with N2 represented cells producing neomycin phosphotransferase. Activity in the CFU-GM colonies approached 50% of that of drug-resistant vector- producing cells on a per cell basis. To test the hypothesis that more rapidly cycling bone marrow cells would be more susceptible to vector infection, we treated progenitor cells obtained from cyclic hematopoietic (CH) dogs with the N2 vector. Despite the increased numbers of hematopoietic progenitor cells obtained from CH dogs, the proportion of G418-resistant CFU-GM did not increase over that obtained with N2-infected normal marrow. These results demonstrate that retroviral vectors can be used to transfer and express exogenous genes in canine hematopoietic progenitor cells.


Blood ◽  
1994 ◽  
Vol 83 (9) ◽  
pp. 2436-2443 ◽  
Author(s):  
MC Yoder ◽  
VE Papaioannou ◽  
PP Breitfeld ◽  
DA Williams

Abstract The mechanisms involved in the induction of yolk sac mesoderm into blood islands and the role of visceral endoderm and mesoderm cells in regulating the restricted differentiation and proliferation of hematopoietic cells in the yolk sac remain largely unexplored. To better define the role of murine yolk sac microenvironment cells in supporting hematopoiesis, we established cell lines from day-9.5 gestation murine yolk sac visceral endoderm and mesoderm layers using a recombinant retrovirus vector containing Simian virus 40 large T- antigen cDNA. Obtained immortalized cell lines expressed morphologic and biosynthetic features characteristic of endoderm and mesoderm cells from freshly isolated yolk sacs. Similar to the differentiation of blood island hematopoietic cells in situ, differentiation of hematopoietic progenitor cells in vitro into neutrophils was restricted and macrophage production increased when bone marrow (BM) progenitor cells were cultured in direct contact with immortalized yolk sac cell lines as compared with culture on adult BM stromal cell lines. Yolk sac- derived cell lines also significantly stimulated the proliferation of hematopoietic progenitor cells compared with the adult BM stromal cell lines. Thus, yolk sac endoderm- and mesoderm-derived cells, expressing many features of normal yolk sac cells, alter the growth and differentiation of hematopoietic progenitor cells. These cells will prove useful in examining the cellular interactions between yolk sac endoderm and mesoderm involved in early hematopoietic stem cell proliferation and differentiation.


Sign in / Sign up

Export Citation Format

Share Document