Induction of Fetal Hemoglobin by Transcriptional Co-Activators MTF-1 and TSPYL1

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 353-353 ◽  
Author(s):  
Kenneth R Peterson ◽  
Flavia C Costa ◽  
Halyna Fedosyuk ◽  
Renee Neades ◽  
Johana Bravo de los Rios ◽  
...  

Abstract Abstract 353 Sickle cell disease (SCD) impacts one of 400 African-Americans born each year. Augmentation of fetal hemoglobin (HbF) levels is widely accepted as the most effective method for treating SCD, but hydroxyurea (HU) is currently the only approved drug that increases HbF. Thus, there is a need for the development of new therapies for this disease, including the identification of transcriptional activators that specifically up-regulate γ-globin (HbF). Developmental regulation of human β-like globin gene switching is controlled by several parameters, including cis- and trans-acting transcriptional determinants. Understanding the mechanisms underlying control of globin gene expression, particularly those involved in activation of γ-globin expression (HbF) is important for developing new treatments for SCD. Metal-responsive transcription factor-1 (MTF-1) is a key regulator of zinc metabolism in higher eukaryotes that controls the metal-inducible expression of metallothioneins and a number of other genes directly involved in the intracellular sequestration and efflux transport of zinc. Previous studies demonstrated that MTF-1 plays an essential role in liver development and that MTF-1-deficient mice display an anemic phenotype, suggesting a role for MTF-1 in hematopoiesis. In our study, when murine MTF-1 was expression was enforced, we observed a 5-fold increase in γ-globin expression in K562 cells. We also demonstrated increased γ-globin expression in adult blood from MTF-1 human β-globin locus yeast artificial chromosome (β-YAC) bi-transgenic (bigenic) mouse lines at the mRNA level by quantitative real-time RT-PCR (qPCR) and at the protein level by FACS analysis. Lastly, γ-globin gene expression was induced 12-fold in bone marrow cells (BMCs) derived from these bigenic mice compared to BMCs derived from β-YAC-only mice, and 3-fold after 6 hours of zinc treatment in β-YAC-only BMCs. Corroborative studies including zinc-deficient and zinc replete diets in β-YAC mice and erythroid-specific MTF-1 loss-of-function in loxP-flanked-MTF-1 LCR-β-globin promoter-Cre β-YAC mice further support a role for MTF-1 in g-globin gene expression. Chromatin immunoprecipitation (ChIP) analysis did not show recruitment of MTF-1 to any γ-globin gene-proximal metal response elements (MREs), the DNA motif that MTF-1 binds to control zinc metabolism genes. However, GATA-2 co-immunoprecipitated with MTF-1 in MTF-1 β-YAC BMCs, but not in β-YAC-only BMCs, suggesting that reactivation of γ-globin expression by MTF-1 might be mediated by a MTF-1-GATA-2 protein complex. ChIP experiments indicated that MTF-1 and GATA-2 co-occupy the same sites in the γ-globin promoter. Two of the stronger co-recruitment regions contain not only GATA sites, but also non-canonical MREs that vary by 1 or 2 bp from the canonical 7 bp MRE core. Interestingly, GATA-2 was induced 2-fold in adult blood of MTF-1 β-YAC mice, and also 3.5-fold in MTF-1 β-YAC BMCs treated with zinc for 6 hours. Our data suggest that activation of γ-globin by MTF-1 is mediated by protein-protein interaction with GATA-2 and that this multi-protein complex is targeted to GATA sites located in the γ-globin gene-promoters via binding of the GATA-2 protein. In a previous study we identified testis-specific protein Y-like 1 (TSPYL1) as a candidate gene involved in activation of γ-globin (de Andrade et al., 2006, Blood Cells, Mol. & Dis. 37:82). TSPYL1 mRNA level was increased 2–5 fold in deletional hereditary persistence of fetal hemoglobin (HPFH-2) subjects and decreased in a carrier of the Sicilian δβ-thalassemia trait. TSPYL1 is a transcription factor that is a member of the nucleosome assembly protein (NAP) family. TSPYL1 is not a DNA-binding protein; thus it exerts its effect through protein-protein interactions. When we enforced expression of human TSPYL1 in K562 cells an 11-fold induction of γ-globin expression was obtained. A reduction of γ-globin expression was observed following TSPYL1 knockdown in K562 cells. qPCR analysis of blood from TSPYL1 β-YAC bigenic mice showed that γ-globin expression was increased 4–12-fold. Taken together, our data strongly support the evidence that MTF-1 and TSPYL1 reactivate γ-globin expression in adult erythropoiesis. These two proteins represent potential new targets in strategies to reactivate γ-globin in hemoglobinopathies where higher levels of HbF would have beneficial effects. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
1997 ◽  
Vol 90 (1) ◽  
pp. 421-427 ◽  
Author(s):  
Delia C. Tang ◽  
David Ebb ◽  
Ross C. Hardison ◽  
Griffin P. Rodgers

Abstract Hemoglobin A2 (HbA2 ), which contains δ-globin as its non–α-globin, represents a minor fraction of the Hb found in normal adults. It has been shown recently that HbA2 is as potent as HbF in inhibiting intracellular deoxy-HbS polymerization, and its expression is therefore relevant to sickle cell disease treatment strategies. To elucidate the mechanisms responsible for the low-level expression of the δ-globin gene in adult erythroid cells, we first compared promoter sequences and found that the δ-globin gene differs from the β-globin gene in the absence of an erythroid Krüppel-like factor (EKLF ) binding site, the alteration of the CCAAT box to CCAAC, and the presence of a GATA-1 binding site. Second, serial deletions of the human δ-globin promoter sequence fused to a luciferase (LUC) reporter gene were transfected into K562 cells. We identified both positive and negative regulatory regions in the 5′ flanking sequence. Furthermore, a plasmid containing a single base pair (bp) mutation in the CCAAC box of the δ promoter, restoring the CCAAT box, caused a 5.6-fold and 2.4-fold (P < .05) increase of LUC activity in transfected K562 cells and MEL cells, respectively, in comparison to the wild-type δ promoter. A set of substitutions that create an EKLF binding site centered at −85 bp increased the expression by 26.8-fold and 6.5-fold (P < .05) in K562 and MEL cells, respectively. These results clearly demonstrate that the restoration of either an EKLF binding site or the CCAAT box can increase δ-globin gene expression, with potential future clinical benefit.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3833-3833
Author(s):  
Hongtao Xing ◽  
Siwei Zhang ◽  
H. Phillip Koeffler ◽  
Ming Chiu Fung

Abstract The search for novel therapeutic candidates causing reactivation of fetal hemoglobin (a2g2; HbF) to reduce the imbalance of globin gene expression is important in order to develop effective approach for the clinical management of sickle cell anemia and b-thalassemia. For the first time, we have identified cucurbitacin D (CuD), a naturally occurring oxygenated tetracyclic triterpenoid, as a molecular entity inducing g-globin gene expression and HbF synthesis in K562 cells and human erythroid progenitors from either peripheral blood or bone marrow. The upregulation of HbF induced by CuD was dose- and time- dependent. CuD was compared to hydroxyurea (HU), 5-azacytidine, amifostine, recombinant human erythropoietin (rhEPO), and sodium phenylbutyrate. At their optimal dosage, CuD (12.5 ng/mL) and HU (25.0 μg/mL) induced nearly 70% K562 cells to express total hemoglobin after 6 days culture, which was higher than the induction by Amifostine (30%), 5-azacytidine (36%), rhEPO (16%), sodium phenylbutyrate (23%) at their optimal concentrations and negative control (11%). Fetal hemoglobin ELISA showed that CuD (12.5 ng/mL) and 5-azacytidine (400 ng/mL) induced higher levels of fetal hemoglobin in K562 cells (15.4 ng/μL and 29.3 ng/μL, respectively), compared to HU (10.3 ng/μL), amifostine (7.8 ng/μL), rhEPO (10.9 ng/μL), sodium phenylbutyrate (9.9 ng/μL) at their optimal concentrations and negative control (5.3 ng/μL). CuD induced a significantly higher fetal cell percentage than HU in K562 cells (65% vs 37% maximum) and primary erythroid progenitors (36% vs 21% maximum) based on the immunofluorescence imaging and flow cytometry analysis. Real-time PCR results showed that the amount of γ-globin mRNA increased from 2.5-fold in CuD-optimal-treated cells (12.5 ng/mL, 48 hours) compared with 1.5-fold in HU-optimal-treated cells (25.0 μg/mL, 48 hours). Growth inhibition assay (MTT) demonstrated that CuD at its optimal γ-globin inducing dosage (12.5 ng/mL) inhibited proliferation of K562 by less than 10% of untreated control cells; while hydroxyurea at its optimal dosage (25.0 μg/mL) inhibited 80% of cell division. The in vitro therapeutic index (calculated by dividing the dose inhibiting 50% cell growth (IC50) by dose inducing 50% maximal HbF production (ED50)) of CuD was 40-fold greater than HU. Taken together, the results suggest that CuD has the potential to be a therapeutic agent for treatment of sickle cell anemia and b-thalassemia.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 645-645
Author(s):  
Inderdeep S Kalra ◽  
Md. M Alam ◽  
Betty S Pace

Abstract Abstract 645 Kruppel-like factors (KLFs) are a family of Cys2His2 zinc-finger DNA binding proteins that regulate gene expression through CACCC/GC/GT box binding in various gene promoters. The CACCC element is also critical for developmental regulation of the human γ-globin and β-globin genes; therefore studies to identify transcription factors that bind the CACCC element to alter gene expression are desirable. By microarray-based gene profiling, we identified two Kruppel-like factors, KLF4 and KLF12 whose expression levels decreased simultaneously with γ-globin silencing during in vitro erythroid maturation. Subsequent reverse transcription quantitative PCR (RT-qPCR) analysis confirmed KLF4 and KLF12 mRNA levels decreased 56-fold and 16-fold respectively in erythroid progenitors from day 7 to day 28 with over 90% γ-globin gene silencing. The effects of known fetal hemoglobin inducers hemin (50μM) and sodium butyrate (2mM) on KLF factor expression was tested in K562 cells. Hemin and sodium butyrate increased KLF4 3-fold (p<0.05) and 13-fold (p<0.01) respectively while KLF12 was only induced by butyrate. Likewise, hemin treatment of KU812 leukemia cells, which actively express γ-globin and β-globin, produced a 7-fold increase in KLF4 (p<0.05) while KLF12 levels were not changed suggesting KLF4 may be directly involved in γ-globin gene regulation. To characterize its role further siRNA-mediated loss of function studies were performed in K562 cells. A 60% knockdown of KLF4 expression produced 40% attenuation of γ-globin transcription (p<0.05). To confirm this effect, rescue experiments were performed as follows: K562 cells were treated with 100nM siKLF4 alone or in combination with the pMT3-KLF4 expression vector (10 and 20μg) for 48 hrs. The 40% knockdown of γ-globin expression produced by siKLF4 was rescued to baseline levels after enforced pMT3-KLF4 expression (p<0.05). To establish whether KLF4 directly stimulates γ-globin promoter activity, we performed co-transfection of pMT3-KLF4 and the Gγ-promoter (-1500 to +36) cloned into the pGL4.17 Luc2/neo vector; a dose-dependent increase in luciferase activity (2- to 5-fold; p<0.001) was observed. Furthermore, enforced expression of pMT3-KLF4 augmented endogenous γ-globin expression 2-fold (p<0.01). Collectively, these studies suggest that KLF4 acts as a trans-activator of γ-globin gene transcription. To address the physiological relevance of these findings, studies were extended to human primary erythroid cells grown in a two-phase liquid culture system. At day 11 when γ-globin gene expression was maximal, siKLF4 treatment produced a 60% decrease in γ/β-globin mRNA levels (p<0.001). By contrast, enforced pMT3-KLF4 expression enhanced γ/β-globin 1.5-fold at day 11 and day 28 (after γ-globin silencing); HbF levels were induced 1.5-fold (p<0.05) which was demonstrated by enzyme-linked immunosorbent assay. To gain insights into the molecular mechanism of KLF4-mediated γ-globin regulation, electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation assay (ChIP) were completed. Since CREB binding protein (CBP) is known to function as a co-activator for KLF1, 4 and 13, we also tested its role in γ-globin gene regulation. EMSA performed with K562 nuclear extract and a [γ-32P] labeled γ-CACC probe (-155 to -132 relative to the γ-globin cap site) produced three DNA-protein complexes; the addition of KLF4 or CBP antibody resulted in a marked decrease in intensity of all complexes suggesting these factors bind the γ-CACC element. ChIP assay demonstrated 10-fold and 20-fold chromatin enrichment with KLF4 and CBP antibody respectively (p<0.001) confirming in vivo binding at the γ-CACC region. Lastly, co-immunoprecipitation established protein-protein interaction between KLF4 and CBP in K562 cells. Future studies will investigate the role of CBP in KLF4-mediated γ-globin regulation which will provide molecular targets for fetal hemoglobin induction and treatment of sickle cell anemia and β-thalassemia. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1869-1869
Author(s):  
Shalini A Muralidhar ◽  
Sadeieh Nimer ◽  
Betty Pace

Abstract Fetal hemoglobin (HbF; α2γ2) ameliorates vaso-occlusive symptoms in individuals with sickle cell disease (SCD) because of its ability to inhibit hemoglobin S polymerization. One mechanism for γ-globin reactivation likely involves chromatin modification and the release of repressor complexes in which histone deacetylases (HDACs) may be present. The objective of this study was to identify HDACs involved in γ-globin gene regulation. Experiments were performed in K562 cells to determine the ability of NaB (2mM), TSA (0.5μm) and the non-HDAC-inhibitor γ-globin activator hemin (50μM), to alter transcription levels of the HDAC genes during concomitant HbF induction. Gene expression was measured by reverse transcription (RT) of mRNA followed by quantitative PCR (qPCR) analysis using gene-specific primers. Treatment of K562 cells with TSA and NaB reduced transcription levels of both HDAC9 and HDRP (histone deacetylase related protein, a splice variant of HDAC9) from 20–80% as did the control agent hemin (p&lt;0.05). By contrast, expression of HDAC7 and HDAC10 was enhanced in the presence of both HDAC inhibitors. The altered HDAC gene expression levels provided indirect evidence for a possible role in mechanisms of γ-globin response to drug inducers. Subsequent experiments were performed to delineate whether HDAC9 and HDRP are directly involved in γ-globin regulation. We performed siRNA knockdown of HDAC9 and HDRP in K562 cells to determine the effect on expression of endogenous γ-globin. siRNA oligonucleotides were transfected using Oligofectamine (Invitrogen) for 48 hrs and expression of targeted genes were quantified by RT-qPCR. siHDAC9 and siHDRP (Dharmacon) treatment resulted in dose-dependent γ-globin silencing and transactivation respectively at 80–320nM. Experiments were then performed with 160nM of siHDAC9 or siHDRP in the K562 cell lines which were stably transfected with a luciferase reporter (pGL4.17-Luc2-neo, Promega) under the control of Gγ-globin promoter (−1500 to +36) and the pGL4.17-Luc2-neo empty vector. We likewise observed a 30% decrease in luciferase activity with siHDAC9 and a 40% increase with siHDRP suggesting that HDAC9 and its variant are directly involved in regulation of γ-promoter activity. In summary, the effects on endogenous γ globin levels and Gγ globin promoter activity through HDAC9/HDRPspecific knockdown by siRNA experiments suggest that HDAC9 molecules play a role in regulating γ-globin gene expression. We conclude that HDAC9 and HDRP have opposite regulatory effect on γ-globin gene expression and may act by a feedback mechanism.


Blood ◽  
2005 ◽  
Vol 105 (8) ◽  
pp. 3330-3339 ◽  
Author(s):  
Jie Wen ◽  
Suming Huang ◽  
Heather Rogers ◽  
Liliane A. Dickinson ◽  
Terumi Kohwi-Shigematsu ◽  
...  

AbstractSpecial AT-rich binding protein 1 (SATB1) nuclear protein, expressed predominantly in T cells, regulates genes through targeting chromatin remodeling during T-cell maturation. Here we show SATB1 family protein induction during early human adult erythroid progenitor cell differentiation concomitant with ϵ-globin expression. Erythroid differentiation of human erythroleukemia K562 cells by hemin simultaneously increases γ-globin and down-regulates SATB1 family protein and ϵ-globin gene expression. Chromatin immunoprecipitation using anti-SATB1 anti-body shows selective binding in vivo in the β-globin cluster to the hypersensitive site 2 (HS2) in the locus control region (LCR) and to the ϵ-globin promoter. SATB1 overexpression increases ϵ-globin and decreases γ-globin gene expression accompanied by histone hyperacetylation and hypomethylation in chromatin from the ϵ-globin promoter and HS2, and histone hypoacetylation and hypermethylation associated with the γ-globin promoter. In K562 cells SATB1 family protein forms a complex with CREB-binding protein (CBP) important in transcriptional activation. In cotransfection experiments, increase in ϵ-promoter activity by SATB1 was amplified by CBP and blocked by E1A, a CBP inhibitor. Our results suggest that SATB1 can up-regulate the ϵ-globin gene by interaction with specific sites in the β-globin cluster and imply that SATB1 family protein expressed in the erythroid progenitor cells may have a role in globin gene expression during early erythroid differentiation. (Blood. 2005;105:3330-3339)


Blood ◽  
1997 ◽  
Vol 90 (1) ◽  
pp. 421-427 ◽  
Author(s):  
Delia C. Tang ◽  
David Ebb ◽  
Ross C. Hardison ◽  
Griffin P. Rodgers

Hemoglobin A2 (HbA2 ), which contains δ-globin as its non–α-globin, represents a minor fraction of the Hb found in normal adults. It has been shown recently that HbA2 is as potent as HbF in inhibiting intracellular deoxy-HbS polymerization, and its expression is therefore relevant to sickle cell disease treatment strategies. To elucidate the mechanisms responsible for the low-level expression of the δ-globin gene in adult erythroid cells, we first compared promoter sequences and found that the δ-globin gene differs from the β-globin gene in the absence of an erythroid Krüppel-like factor (EKLF ) binding site, the alteration of the CCAAT box to CCAAC, and the presence of a GATA-1 binding site. Second, serial deletions of the human δ-globin promoter sequence fused to a luciferase (LUC) reporter gene were transfected into K562 cells. We identified both positive and negative regulatory regions in the 5′ flanking sequence. Furthermore, a plasmid containing a single base pair (bp) mutation in the CCAAC box of the δ promoter, restoring the CCAAT box, caused a 5.6-fold and 2.4-fold (P < .05) increase of LUC activity in transfected K562 cells and MEL cells, respectively, in comparison to the wild-type δ promoter. A set of substitutions that create an EKLF binding site centered at −85 bp increased the expression by 26.8-fold and 6.5-fold (P < .05) in K562 and MEL cells, respectively. These results clearly demonstrate that the restoration of either an EKLF binding site or the CCAAT box can increase δ-globin gene expression, with potential future clinical benefit.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 975-975
Author(s):  
Elizabeth Macari ◽  
Rachel West ◽  
William J. Lowrey ◽  
Rodwell Mabaera ◽  
Christopher H. Lowrey

Abstract Abstract 975 Induction of fetal hemoglobin (HbF) has proven therapeutic potential to treat sickle cell disease and β-thalassemia. However, agents known to be effective in humans, including HU, DNMT inhibitors and butyrate derivatives are not ideal due to suppression of hematopoeisis and the possibility of long-term side effects including those related to DNA mutation and epigenetic changes. Recently, two natural compounds, angelicin (Lampronti, et al, Eur J Hematol 2003) and resveratrol (Rodrigue, et al, Hematology 2001) have been found to induce γ-globin gene expression in K562 cells. These agents may be important lead compounds as they are generally non-cytotoxic and are being evaluated in ongoing human trials as cancer chemoprevention agents. These and several other agents are thought to work by activating antioxidant response pathway genes. The products of these genes are enzymes involved in antioxidant and detoxification activities and include NADPH-quinone oxireductase 1 (NQO1), glutamate-cysteine ligase (GCL) and glutathione S-transferase (GST). The activation of these genes is mediated by the transcription factor NF-E2 related factor 2 (Nrf2) which binds to a specific antioxidant response element (ARE) sequence (TGACnnnGCA) in target gene promoters. The proximal γ-globin promoter contains an ARE sequence between two CAAT boxes, suggesting that it too may be activated by Nrf2. This led us to hypothesize that drugs which activate the ARE/Nrf2 pathway may provide a less toxic approach to HbF induction. Several compounds that activate this pathway are already approved for human use or are under investigation in human trials. To test this hypothesis, we treated K562 cells with various Nrf2 pathway activators. First, we determined the maximum concentration of each compound that did not inhibit proliferation of K562 cells. Using these doses, we performed time course experiments by treating K562 cells and then measuring steady-state mRNA levels of Nrf2 target genes and γ-globin using quantitative real-time PCR. We initially tested six compounds that are known to induce antioxidant response genes. We found the most pronounced γ-globin induction followed treatment with tert-butylhydroquinone (tBHQ) (2.8 fold), 3H-1,2 dithiole-3-thione (D3T) (2.4 fold) and curcumin (2.1 fold). We next tested tBHQ in erythroid precursors isolated from normal human bone marrow. In these primary cells it also significantly increased expression of γ-globin mRNA and of Nrf2 target genes NQO1, GCLM and GSTP1. To determine if Nrf2 was necessary for tBHQ induction of γ-globin mRNA we used siRNA to knockdown Nrf2 expression in K562 cells. Our results show that transiently silencing Nrf2 transcription prevented γ-globin and NQO1 gene induction by tBHQ compared to samples transfected with scrambled siRNA (p < 0.01). To determine if this requirement for Nrf2 is due to Nrf2 binding at the ARE consensus sequence in the γ-globin promoter, ChIP analysis was performed. This demonstrated that Nrf2 binding at both the γ-globin and NQO1 promoters was progressively increased at 4 and 6 hours after tBHQ treatment compared to the negative control necdin promoter where there was no change. Taken together, these results suggest that the antioxidant tBHQ induces γ-globin mRNA expression through the Nrf2/ARE pathway and that this may be a less toxic strategy for γ-globin gene induction in people with hemoglobinopathies. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 332-332
Author(s):  
Ivan Krivega ◽  
Colleen Byrnes ◽  
Jaira F. de Vasconcellos ◽  
Y. Terry Lee ◽  
Megha Kaushal ◽  
...  

Abstract Globin gene expression undergoes developmental switching from embryonic (ε) through fetal (γ) to adult (δ and β) genes. Inherited mutations or deletions at the β-gene cause beta-thalassemia. One of the most propitious strategies of treatment for the disease is forced switching from mutated β-gene to unaffected fetal γ-gene expression in adult erythroid cells. Expression of globin genes is regulated by the upstream LCR enhancer. The LCR enhancer loops to globin gene promoters utilizing the LDB1/GATA-1/TAL1/LMO2 protein complex. Additionally histone-modifying enzymes play a significant role in regulation of globin gene expression. G9a methyltransferase, responsible for establishing H3K9me2 histone modification, is involved in repressing fetal and activating adult globin gene expression in mouse erythroid cells. Moreover, inhibition of G9a methyltransferase activity by the synthetic chemical compound UNC0638 activates γ- and represses β-gene expression in adult human hematopoietic precursor CD34(+) cells. Using ex vivo differentiation of primary CD34(+) adult human cells as a model system, we investigated the effect of UNC0638 on switching from β- to γ-globin gene expression, LDB1 complex occupancy and LCR/β-gene promoter looping patterns in adult erythroblast cells. Human peripheral blood CD34(+) progenitor cells from three healthy adult donors were differentiated for 21 days in a three phase serum-free media system. Based upon dose titration studies, 1µM UNC0638 was added to the medium during the most proliferative phase of culture (days 7-14) and compared to control cells grown without UNC0638. Under these conditions, a highly significant 5-fold increase in γ-globin gene expression was observed. UNC0638 treatment also caused a pronounced (3-fold) reduction in β-globin gene expression without substantial change in α-globin. At the end of the culture period, HPLC analyses also demonstrated that UNC0638 treatment resulted in a considerable increase in the cellular fetal hemoglobin (HbF / HbA + HbF: control: 2.9 +/- 1.2%; UNC0638: 30.9 +/- 2.5%, p=0.003). Chromatin immunoprecipitation and chromosome conformation capture assays were utilized to determine if the increase of fetal hemoglobin along with activation of γ-gene expression and concomitant reduction of β-gene expression were associated with epigenetic modification of the β-globin locus. UNC0638 erased H3K9me2 histone modification in the β-globin locus and caused changes in LCR looping from interaction with the β- to the γ-globin gene. Mirroring differences in looping pattern, LDB1 containing protein complex occupancy was significantly increased at the γ-globin gene and decreased at δ- and β-gene promoters. These results support a model whereby G9a establishes conditions preventing activation of γ-gene by interacting with the LCR and facilitating LCR looping with δ- and β-gene promoters and subsequent strong activation of adult globin genes expression during differentiation of adult erythroid progenitor cells. In this view, G9a inhibition represents a promising approach for treatment of β-hemoglobinopathies. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1867-1867
Author(s):  
Paolo Moi ◽  
Giuseppina Maria Marini ◽  
Loredana Porcu ◽  
Isadora Asunis ◽  
Maria Giuseppina Loi ◽  
...  

Abstract EKLF and related Krueppel-like factors (KLFs) are variably implicated in the regulation of the β- and β-like globin genes. Prompted by the observation that four KLF sites are distributed in the human α-globin promoter, we investigated if any of the β-globin cluster regulating KLFs could also act to modulate the expression of the α-globin genes. We found that, among the globin regulating KLFs (EKLF, LKLF, BKLF, GKLF, KLF6, FKLF and FKLF2), only GKLF and BKLF bound specifically to three out of four KLF sites. In K562 cells, over-expressed GKLF transactivated at high levels a α-globin-luciferase reporter and its action was impaired by point mutations of the KLF sites that disrupted GKLFDNA binding. In K562 cells stably transfected with a Tet-off regulated GKLF expression cassette, GKLF induction stimulated the expression of the endogenous α-globin genes. In a complementary assay in K562 cells, knocking down GKLF expression with small interfering RNAs caused a parallel decrease in the transcription of the α-globin genes. All experiments combined support a main regulatory role of GKLF in the control of α-globin gene expression.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2071-2071 ◽  
Author(s):  
Sara Gaudino ◽  
Raffaella Petruzzelli ◽  
Giovanni Amendola ◽  
Raffaele Sessa ◽  
Stella Puzone ◽  
...  

Abstract Abstract 2071 Impaired switching from fetal hemoglobin (HbF) to adult globin gene expression leads to hereditary persistence of fetal hemoglobin (HPFH) in adult life. This is of prime interest because elevated HbF levels ameliorate beta-thalassemia and sickle cell anemia. Fetal hemoglobin levels are regulated by complex mechanisms involving factors linked or not to the beta-globin gene locus. Recently, we reported an inverse relationship between Ggamma-globin gene (HBG2) and Cold Shock Domain Protein A (CSDA) expression levels. Based on mRNA differential display analysis, RNA interference and over-expression studies in K562 and primary erythroid cells we postulated that CSDA could contribute to regulate HBG2 expression. The putative mechanism by which CSDA modulates HBG2 expression was investigated in K562 cells by gene reporter assays on wild-type and mutant constructs of the HBG2 promoter region suspected to bind CSDA, providing experimental evidence that CSDA acts as repressor of HBG2 expression. Furthermore, chromatin immunoprecipitation (ChIP) analysis on K562 cells showed that CSDA interacts in vivo with this promoter region. In this way we were able to demonstrate that CSDA modulates HBG2 expression at least in part at the transcriptional level (Petruzzelli R et al, Br J Haematol 2010). The CSDA gene is located at position 12p13.1 and comprises 10 exons. The C-terminus (exons 6–9) is involved in protein-protein interactions. Alternative splicing of exon 6 results in two main isoforms, namely CSDA isoform a and isoform b, which show different C-terminal domains, potentially able to take part to specific protein complexes. We found that expression levels of CSDA isoform a were reduced in HPFH patients respect to isoform b. These findings suggested that isoform a could be much more involved in repression of HBG2 expression compared to isoform b. To identify putative CSDA interactors, we over-expressed these two FLAG-tagged CSDA isoforms in K562 cells. Western-blot analysis on proteins immunoprecipitated with a FLAG antibody revealed the presence of NF-kB p50 and p65 subunits and histone deacethylase 2 (HDAC2) only in samples co-immunoprecipitated with CSDA isoform a, but not with isoform b (Fig. 1). By ChIP assays with antibodies against p65, p50 and HDAC2, we demonstrated that both the NF-kB p50-p65 heterodimer and HDAC2 interact with the –200 bp region of the HBG2 promoter containing the CSDA binding site (Fig. 2). To examine the role of NF-kB and histone deacetylases on the transcriptional repression of HBG2 expression, we treated K562 cells with the proteasome inhibitor bortezomib which blocks the nuclear traslocation and transcriptional activity of the NF-kB p65-p50 complex or with the histone deacetylase inhibitor trichostatin A (TSA). Quantitative analysis by Real Time PCR showed that HBG2 expression increased following either bortezomib or TSA treatments. Furthermore, by ChIP analysis we were able to demonstrate that knock-down of CSDA abolished these interactions. To investigate if treatment with bortezomib or TSA affects the histone acetylation levels at the -200 bp region of the HBG2 promoter, we performed ChIP assays in K562 cells using an anti-acetyl-H3 antibody. Results indicated that both these drugs induces a considerable increase in H3 acetylation levels at the -200 bp region of the HBG2 promoter (Fig. 3). Taken altogether these data indicate that NF-kB and HDAC2 interact with CSDA to form a multiprotein complex which take part to the regulation of HBG2 expression by modulating local chromatin conformation. Furthermore, our study contributes to better define the role played by CSDA in fetal globin gene expression and shed novel light on the molecular mechanisms involved in globin gene switching. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document