scholarly journals Disruption of the Multiple Tumor Suppressor Gene MTS1/p16INK4a/CDKN2 by Illegitimate V(D)J Recombinase Activity in T-Cell Acute Lymphoblastic Leukemias

Blood ◽  
1997 ◽  
Vol 90 (9) ◽  
pp. 3720-3726 ◽  
Author(s):  
Jean-Michel Cayuela ◽  
Betty Gardie ◽  
François Sigaux

Abstract We have recently shown that the multiple tumor suppressor gene 1 (MTS1 ) encoding the p16INK4a and p19ARF cell-cycle inhibitors is inactivated by deletion or disruption in most human T-cell acute lymphoblastic leukemias (T-ALLs), representing the most frequent genetic event thus far described in this disease. To analyze the mechanism of these chromosomal events, we used cloning, sequencing, and/or polymerase chain reaction mapping to study 15 rearrangements occurring in the MTS1 locus. We found that these breakpoints occur in two clusters (MTS1bcrα and MTS1bcrβ ). The three rearrangements occurring in MTS1bcrα correspond to a recurrent recombination juxtaposing 5′ MTS2 exon 1 and 5′ MTS1 exon 1α sequences. Breakpoints for 10 of 12 rearrangements within MTS1bcrβ are located at a polymorphic (CA) repeat, suggesting that this sequence might play a role in the clustering. For both MTS1bcrα and MTS1bcrβ, sequence analyses and PCR mapping experiments show that the tightly clustered breakpoints are located in the vicinity of heptamers whose sequence is similar to those involved in the V(D)J recombination. Moreover, short deletions, GC-rich random nucleotide additions, and clone-specific junctional sequences are present in all cases, further suggesting that the rearrangements are due to illegitimate V(D)J recombinase activity. These data are the first demonstration that a tumor suppressor gene can be inactivated by the V(D)J recombinational mechanism. Moreover, they reinforce the view that this process, normally required for T-cell differentiation, plays a crucial role in the pathogenesis of T-ALL.

Blood ◽  
1996 ◽  
Vol 87 (6) ◽  
pp. 2180-2186 ◽  
Author(s):  
JM Cayuela ◽  
A Madani ◽  
L Sanhes ◽  
MH Stern ◽  
F Sigaux

No constant genetic alteration has yet been unravelled in T-cell acute lymphoblastic leukemia (T-ALL), and, to date, the most frequent alteration, the SIL-TAL1 deletion, is found in approximately 20% of cases. Recently, two genes have been identified, the multiple tumor- suppressor gene 1 (MTS1) and multiple tumor-suppressor gene 2 (MTS2), whose products inhibit cell cycle progression. A characterization of the MTS locus organization allowed to determine the incidence of MTS1 and MTS2 inactivation in T-ALL. MTS1 and MTS2 configurations were determined by Southern blotting using 8 probes in 59 patients with T- ALL (40 children and 19 adults). Biallelic MTS1 inactivation by deletions and/or rearrangements was observed in 45 cases (76%). Monoallelic alterations were found in 6 cases (10%). The second MTS1 allele was studied in the 4 cases with available material. A point mutation was found in 2 cases. The lack of MTS1 mRNA expression was observed by Northern blot analysis in a third case. A normal single- strand conformation polymorphism pattern of MTS1 exons 1alpha and 2 was found and MTS1 RNA was detected in the fourth case, but a rearrangement occurring 5′ to MTS1 exon 1 alpha deleting MTS1 exon 1Beta was documented. One case presented a complex rearrangement. Germline configuration for MTS1 and MTS2 was found in only 7 cases. The localization of the 17 breakpoints occurring in the MTS locus were determined. Ten of them (59%) are clustered in a 6-kb region located 5 kb downstream to the newly identified MTS1 exon 1Beta. No rearrangement disrupting MTS2 was detected and more rearrangements spared MTS2 than MTS1 (P<.01). MTS1 but not MTS2 RNA was detected by Northern blotting in the human thymus. These data strongly suggest that MTS1 is the functional target of rearrangements in T-ALL. MTS1 inactivation, observed in at least 80% of T-ALL, is the most consistent genetic defect found in this disease to date.


1999 ◽  
Vol 19 (2) ◽  
pp. 155-157 ◽  
Author(s):  
Zhu Shengrong ◽  
Wang Xiuli ◽  
Shao Lenan ◽  
Chen Weimin ◽  
Chen Xinming ◽  
...  

2019 ◽  
Vol 33 (2) ◽  
pp. 319-319
Author(s):  
Maria Antonella Laginestra ◽  
Luciano Cascione ◽  
Giovanna Motta ◽  
Fabio Fuligni ◽  
Claudio Agostinelli ◽  
...  

An amendment to this paper has been published and can be accessed via a link at the top of the paper.


2019 ◽  
Vol 33 (2) ◽  
pp. 179-187 ◽  
Author(s):  
Maria Antonella Laginestra ◽  
Luciano Cascione ◽  
Giovanna Motta ◽  
Fabio Fuligni ◽  
Claudio Agostinelli ◽  
...  

Blood ◽  
1999 ◽  
Vol 93 (2) ◽  
pp. 613-616 ◽  
Author(s):  
Yoshihiro Hatta ◽  
Yasuaki Yamada ◽  
Masao Tomonaga ◽  
Isao Miyoshi ◽  
Jonathan W. Said ◽  
...  

Abstract Previously, we have found that the loss of heterozygosity (LOH) was frequently observed on chromosome 6q in acute/lymphoma-type adult T-cell leukemia (ATL), suggesting a putative tumor-suppressor gene for ATL may be present on chromosome 6q. To further define a region containing this gene, we performed fine-scale deletional mapping of chromosome 6q in 22 acute/lymphomatous ATL samples using 24 highly informative microsatellite markers. LOH was found in 9 samples (40.9%) at 1 or more of the loci examined. Of the 9 samples, 8 shared the same smallest commonly deleted region flanked by D6S1652 and D6S1644 (6q15-21). The genetic distance between these two loci is approximately 4 cM. These results suggest that a putative tumor-suppressor gene on chromosome 6q15-21 probably plays a very important role in the evolution of acute/lymphomatous ATL. Our map provides key information toward cloning the gene.


PLoS ONE ◽  
2010 ◽  
Vol 5 (5) ◽  
pp. e10828 ◽  
Author(s):  
Megan L. Durr ◽  
Wojciech K. Mydlarz ◽  
Chunbo Shao ◽  
Marianna L. Zahurak ◽  
Alice Y. Chuang ◽  
...  

Epigenetics ◽  
2007 ◽  
Vol 2 (1) ◽  
pp. 15-21 ◽  
Author(s):  
Jianming Ying ◽  
Hongyu Li ◽  
Paul Murray ◽  
Zifen Gao ◽  
Yun-Wen Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document