scholarly journals Whole exome sequencing reveals mutations in FAT1 tumor suppressor gene clinically impacting on peripheral T-cell lymphoma not otherwise specified

2019 ◽  
Vol 33 (2) ◽  
pp. 179-187 ◽  
Author(s):  
Maria Antonella Laginestra ◽  
Luciano Cascione ◽  
Giovanna Motta ◽  
Fabio Fuligni ◽  
Claudio Agostinelli ◽  
...  
2019 ◽  
Vol 33 (2) ◽  
pp. 319-319
Author(s):  
Maria Antonella Laginestra ◽  
Luciano Cascione ◽  
Giovanna Motta ◽  
Fabio Fuligni ◽  
Claudio Agostinelli ◽  
...  

An amendment to this paper has been published and can be accessed via a link at the top of the paper.


2018 ◽  
Vol 8 (11) ◽  
Author(s):  
Jason Yongsheng Chan ◽  
Alvin Yu Jin Ng ◽  
Chee Leong Cheng ◽  
Maarja-Liisa Nairismägi ◽  
Byrappa Venkatesh ◽  
...  

2019 ◽  
Vol 3 (7) ◽  
pp. 1175-1184 ◽  
Author(s):  
Aishwarya Iyer ◽  
Dylan Hennessey ◽  
Sandra O’Keefe ◽  
Jordan Patterson ◽  
Weiwei Wang ◽  
...  

Abstract Mycosis fungoides (MF), the most common type of cutaneous T-cell lymphoma, is believed to represent a clonal expansion of a transformed skin-resident memory T cell. T-cell receptor (TCR) clonality (ie, identical sequences of rearranged TCRα, TCRβ, and TCRγ), the key premise of this hypothesis, has been difficult to document conclusively because malignant cells are not readily distinguishable from the tumor-infiltrating reactive lymphocytes that contribute to the TCR clonotypic repertoire of MF. Here, we have successfully adopted targeted whole-exome sequencing (WES) to identify the repertoire of rearranged TCR genes in tumor-enriched samples from patients with MF. Although some of the investigated MF biopsies had the expected frequency of monoclonal rearrangements of TCRγ corresponding to that of tumor cells, the majority of the samples presented multiple TCRγ, TCRα, and TCRβ clonotypes by WES. Our findings are compatible with the model in which the initial malignant transformation in MF does not occur in mature memory T cells but rather at the level of T-lymphocyte progenitors before TCRβ or TCRα rearrangements. We have also shown that WES can be combined with whole-transcriptome sequencing in the same sample, which enables comprehensive characterization of the TCR repertoire in relation to tumor content. WES/whole-transcriptome sequencing might be applicable to other types of T-cell lymphomas to determine clonal dominance and clonotypic heterogeneity in these malignancies.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3527-3527
Author(s):  
Masafumi Seki ◽  
Kenichi Yoshida ◽  
Shiraishi Yuichi ◽  
Kenichi Chiba ◽  
Hiroko Tanaka ◽  
...  

Abstract T-cell acute lymphoblastic leukemia (T-ALL) accounts for 10% to 15% of newly diagnosed cases of childhood acute lymphoblastic leukemia (ALL). Recent genome-wide approach revealed frequent NOTCH1 and FBXW7 oncogenic mutations in T-ALL. In addition, previous whole-exome sequencing disclosed novel CNOT3 mutations in approximately 10% of adult T-ALL cases, and thus, CNOT3 is thought to be one of the novel tumor suppressor gene for adult T-ALL. However, somatic mutations in these genes have been found in a fraction of childhood T-ALL, suggesting that the existence of other genetic pathogenesis. Although chromosomal translocations are the most frequent genetic abnormalities detected in other types of leukemia, recurrent translocations except for SIL-TAL1 rearrangement have been poorly defined in T-ALL. To discover driver mutations or fusion genes which involved in the pathogenesis of pediatric T-ALL and to identify novel prognostic markers of childhood T-ALL, we performed whole-exome sequencing (WES) and transcriptome sequencing (WTS) in 25 cases with T-ALL. Diagnostic total DNA from 25 cases and RNA from 15 cases were analyzed for both WES and WTS, and 8 relapsed samples were also analyzed for WES. Median age at diagnosis was 9 years old (1–15), and male to female ratio was 20 to 5. Libraries for WES and WTS were generated using the SureSelect (Agilent) or TruSeq RNA Sample Preparation kit (Illumina), respectively. High throughput sequencing was performed using the Illumina HiSeq 2000 platform. To detect somatic mutations or fusion transcripts, we used our pipeline “Genomon-exome” and “Genomon-fusion” algorithm. Subsequently, somatic mutations were validated using deep amplicon sequencing. Candidate fusion transcripts were validated by reverse - transcription polymerase-chain-reaction (RT-PCR) and Sanger sequencing. Most frequent mutation was NOTCH1, which was detected in 52% (13/25) by WES. FBXW7 mutations were also frequently found in 28% (7/25), and 43 % (3/7) were compound heterozygous mutations. In those 6 cases, only one case with FBWX7 mutation had a NOTCH1 mutation. CNOT3 mutations were reported to be frequent in adult T-ALL; however we found only 2 cases with CNOT3 mutations (8.0%). In addition, PHF6 mutation, which is known as X-linked tumor suppressor gene in T-ALL, was recurrently detected in 4 cases (16%). Other recurrent mutations were shared between 2 cases, respectively. We identified previously known fusion genes, such as MLL-ENL and FGFROP1-FGFR1 in 2 cases. MLL-ENL is one of the frequent translocation for infant multilineage leukemia (MLL), but also reported in non-infant B cell precursor ALL or T-ALL. FGFR1OP is ubiquitously expressed, and the predicted chimeric FGFR1OP-FGFR1 protein contains the catalytic domain of FGFR1. It is thought to be promote hematopoietic stem cell proliferation and leukemogenesis through a constitutive phosphorylation and activation of the downstream pathway of FGFR1. In conclusion, although NOTCH1 and FBXW7 mutations were relatively frequently detected in our series, we could not detect frequent additional mutations in this study. Consistent with other reports, frequent translocations were not observed in T-ALL, suggesting the genetic differences between T-ALL and other hematological malignancies. Further studies will be necessary to unravel oncogenic mechanisms that implicated in new therapeutic strategy for pediatric T-ALL. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3786-3786
Author(s):  
Masafumi Seki ◽  
Kenichi Yoshida ◽  
Yusuke Sato ◽  
Yuichi Shiraishi ◽  
Kenichi Chiba ◽  
...  

Abstract T-cell acute lymphoblastic leukemia (T-ALL) accounts for 10% to 15% of newly diagnosed cases of childhood acute lymphoblastic leukemia (ALL). Generally, childhood T-ALL patients have a worse prognosis than B cell precursor ALL patients. Recent studies have identified a subtype of T-ALL termed “early T-cell precursor” (ETP) ALL, which is associated with a high risk of treatment failure. In spite of recent improvements of risk stratified multiagent chemotherapy, relapsed patients have a poor prognosis even if they were non-ETP ALL. Recent genome-wide approach revealed frequent NOTCH1 and FBXW7 oncogenic mutations mutations in T-ALL. In addition, previous whole-exome sequencing disclosed novel CNOT3 mutations in approximately 10% of adult T-ALL cases, and thus, CNOT3 was thought to be one of the novel tumor suppressor gene for adult T-ALL. CNOT3 is part of the CCR4-NOT complex that is the major deadenylase of mRNA. NT5C2, encoding a 5ʹ-nucleotidase was identified as relapse specific mutation, of which mutation is associated with the outgrowth of drug-resistant clones in ALL. However, these mutations have been found in a fraction of childhood T-ALL suggests that the existence of other genetic pathogenesis. To discover new oncogenic gene mutations which involved in the pathogenesis of relapsed T-ALL and to identify novel prognostic markers of childhood T-ALL, we performed genome-wide analysis using whole-exome sequencing and 250K SNP array analyses in 8 cases with relapsed T-ALL and 16 cases with non-relapsed T-ALL. The mean coverage in the whole-exome sequencing of tumor and germline samples was 108× and 100× for the 50-Mb target regions, respectively, by which more than 90% of the coding sequences were represented by more than 20 independent reads on average. A mean of nonsilent mutations per sample at presentation was 18, and sample at 1st relapsed was 19. There were only 16 recurrent mutations in 24 cases; however no shared mutation in 8 relapsed cases other than NOTCH1 and FBXW7. NOTCH1 mutations were found in 50% (12/24), and were frequently identified in relapsed cases (6/8). FBXW7 mutations were also frequently found in 6/24 cases, and 60 % (3/6) were compound heterozygous mutations. In those 6 cases, only one case with FBWX7 mutation had a NOTCH1 mutation. CNOT3 mutations were reported to be frequent in adult T-ALL, however we found only two cases with CNOT3 mutations (8.3%). In addition, PHF6 mutation, which is known as X-linked tumor suppressor gene in T-ALL, was recurrent in 3 cases. Other recurrent mutations were shared between 2 cases, respectively. NT5C2 mutation has been reported to a relapse-specific mutation, and we also found NT5C2 mutations in 2 relapsed cases, which detected in only relapsed samples. RPL5 and RPL10 mutations were reported to be found in 10 % of pediatric T-ALL; however there was one mutation in RPL related genes in our study. Furthermore, we found common mutations of acute myeloid leukemia such as TCF7, STAT5A, KIT, RUNX1, and EP300 mutations in a single case. On the other hand, although pediatric T-ALL showed largely normal genomic copy number profiles, homozygous deletions at chromosome 9p21 harboring CDKN2A were frequently detected in our study (17/24 71%). Especially, 9p21 deletions were found in all relapsed cases, suggesting that loss of CDKN2A locus was a critical genetic mechanism of relapsed T-ALL. In conclusion, our results revealed mutations in several known genes, but overall frequency of recurrent somatic mutations in childhood T-ALL is low, even in relapsed samples. Although loss of CDKN2A locus was detected in all relapsed cases, recurrent relapse-specific mutations could not be identified other than NT5C2. These findings suggest that the majority of relapsed T-ALL may be driven by aberrations of CDKN2A and minor clone variants and/or epigenetic modifications during tumor evolution. Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Vol 2020 ◽  
Author(s):  
MOUNIA BENDARI ◽  
Wafaa Matrane ◽  
Maryam Qachouh ◽  
Asmaa Quessar ◽  
Nisrine Khoubila

We report the case of a 40-year-old male presented with a painless right testicular swelling. Right radical orchidectomy was performed. The pathological diagnosis was peripheral T-Cell lymphoma-not otherwise specified (PTCL-NOS). According to Ann Arbor staging, the initial clinical stage was IEa. Treating him with four courses of the CHOEP protocol and intrathecal prophylactic chemotherapy was unsuccessful; with the appearance of orbital infiltration and a loco-regional extension. Although the patient started a second line chemotherapy, he unfortunately succumbed to death.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Koen Debackere ◽  
Lukas Marcelis ◽  
Sofie Demeyer ◽  
Marlies Vanden Bempt ◽  
Nicole Mentens ◽  
...  

AbstractPeripheral T-cell lymphoma (PTCL) is a heterogeneous group of non-Hodgkin lymphomas with poor prognosis. Up to 30% of PTCL lack distinctive features and are classified as PTCL, not otherwise specified (PTCL-NOS). To further improve our understanding of the genetic landscape and biology of PTCL-NOS, we perform RNA-sequencing of 18 cases and validate results in an independent cohort of 37 PTCL cases. We identify FYN-TRAF3IP2, KHDRBS1-LCK and SIN3A-FOXO1 as new in-frame fusion transcripts, with FYN-TRAF3IP2 as a recurrent fusion detected in 8 of 55 cases. Using ex vivo and in vivo experiments, we demonstrate that FYN-TRAF3IP2 and KHDRBS1-LCK activate signaling pathways downstream of the T cell receptor (TCR) complex and confer therapeutic vulnerability to clinically available drugs.


Sign in / Sign up

Export Citation Format

Share Document