Caspase Activation Is Required for Nitric Oxide–Mediated, CD95(APO-1/Fas)–Dependent and Independent Apoptosis in Human Neoplastic Lymphoid Cells

Blood ◽  
1998 ◽  
Vol 91 (11) ◽  
pp. 4311-4320 ◽  
Author(s):  
Katerina Chlichlia ◽  
Marcus E. Peter ◽  
Marian Rocha ◽  
Carsten Scaffidi ◽  
Mariana Bucur ◽  
...  

Abstract Nitric oxide (NO), an important effector molecule involved in immune regulation and host defense, was shown to induce apoptosis in lymphoma cells. In the present report the NO donor glycerol trinitrate was found to induce apoptosis in Jurkat cells that are sensitive to CD95-mediated kill. In contrast, a CD95-resistant Jurkat subclone showed substantial protection from apoptosis after exposure to NO. NO induced mRNA expression of CD95 (APO-1/Fas) and TRAIL/APO-2 ligands. Moreover, NO triggered apoptosis in freshly isolated human leukemic lymphocytes which were also sensitive to anti-CD95 treatment. The ability of NO to induce apoptosis was completely blocked by a broad-spectrum ICE (interleukin-1β converting enzyme)-protease/caspase inhibitor and correlated with FLICE/caspase-8 activation. This activation was abrogated in some neoplastic lymphoid cells but not in others by the inhibitor of protein synthesis cycloheximide. Our results were confirmed using an in vitro experimental model of coculture of human lymphoid target cells with activated bovine endothelial cells generating NO as effectors. Furthermore, the inhibition of endogenous NO production with the inducible NO synthase inhibitor NG-monomethyl-L-arginine caused a complete abrogation of the apoptotic effect. Our data provide evidence that NO-induced apoptosis in human neoplastic lymphoid cells strictly requires activation of caspases, in particular FLICE, the most CD95 receptor-proximal caspase. Depending on the cell line tested this activation required or was independent of the CD95 receptor/ligand system.

Blood ◽  
1998 ◽  
Vol 91 (11) ◽  
pp. 4311-4320 ◽  
Author(s):  
Katerina Chlichlia ◽  
Marcus E. Peter ◽  
Marian Rocha ◽  
Carsten Scaffidi ◽  
Mariana Bucur ◽  
...  

Nitric oxide (NO), an important effector molecule involved in immune regulation and host defense, was shown to induce apoptosis in lymphoma cells. In the present report the NO donor glycerol trinitrate was found to induce apoptosis in Jurkat cells that are sensitive to CD95-mediated kill. In contrast, a CD95-resistant Jurkat subclone showed substantial protection from apoptosis after exposure to NO. NO induced mRNA expression of CD95 (APO-1/Fas) and TRAIL/APO-2 ligands. Moreover, NO triggered apoptosis in freshly isolated human leukemic lymphocytes which were also sensitive to anti-CD95 treatment. The ability of NO to induce apoptosis was completely blocked by a broad-spectrum ICE (interleukin-1β converting enzyme)-protease/caspase inhibitor and correlated with FLICE/caspase-8 activation. This activation was abrogated in some neoplastic lymphoid cells but not in others by the inhibitor of protein synthesis cycloheximide. Our results were confirmed using an in vitro experimental model of coculture of human lymphoid target cells with activated bovine endothelial cells generating NO as effectors. Furthermore, the inhibition of endogenous NO production with the inducible NO synthase inhibitor NG-monomethyl-L-arginine caused a complete abrogation of the apoptotic effect. Our data provide evidence that NO-induced apoptosis in human neoplastic lymphoid cells strictly requires activation of caspases, in particular FLICE, the most CD95 receptor-proximal caspase. Depending on the cell line tested this activation required or was independent of the CD95 receptor/ligand system.


2003 ◽  
Vol 285 (4) ◽  
pp. G747-G753 ◽  
Author(s):  
Catalina Caballero-Alomar ◽  
Carmen Santos ◽  
Diego Lopez ◽  
M. Teresa Mitjavila ◽  
Pere Puig-Parellada

We examined in vitro the source and role of basal nitric oxide (NO) in proximal segments of guinea pig taenia caeci in nonadrenergic, noncholinergic (NANC) conditions. Using electron paramagnetic resonance (EPR), we measured the effect of the NO synthase inhibitor NG-nitro-l-arginine methyl ester (l-NAME, 10–4 M), the neuronal blocker tetrodotoxin (TTX, 10–6 M), or both on spontaneous contractions and on the production of basal NO. Both l-NAME and TTX, when tested alone, increased the amplitude and frequency of contractions. NO production was abolished by l-NAME and was inhibited by 38% by TTX. When tested together, l-NAME in the presence of TTX or TTX in the presence of l-NAME had no further effect on the amplitude or frequency of spontaneous contractions, and the NO production was inhibited. These findings suggest that basal NO consists of TTX-sensitive and TTX-resistant components. The TTX-sensitive NO has an inhibitory effect on spontaneous contractions; the role of TTX-resistant NO is unknown.


1995 ◽  
Vol 4 (3) ◽  
pp. 222-228 ◽  
Author(s):  
I. M. Fierro ◽  
C. Barja-Fidalgo ◽  
R. M. Canedo ◽  
F. Q. Cunha ◽  
S. H. Ferreira

Polymorphonuclear neutrophils (PMN) obtained from carrageenin-stimulated peritoneal cavities of rats, but not blood PMN, spontaneously produced nitric oxide (NO) when incubatedin vitro. Incubation of the cells with the NO synthase inhibitors, L-imino-ethyl-L-ornithine (L-NIO) or NG-monomethyl-L-arginine (L-NMMA), inhibited NO production. This inhibition could be reversed by L-arginine. Incubation of PMN with lipopolysaccharide (LPS) failed to enhance NO production. Pretreatment of the rats with dexamethasone (DEXA) prior to carrageenin injection or incubation of PMN with the glucocorticoidin vitropartially inhibited the spontaneous release of NO. On the other hand, when PMN obtained from DEXA pretreated rats were incubatedin vitrowith DEXA, NO synthase activity and hence NO generation were almost abolished. A similar inhibition was also observed following the addition of L-NIO or cycloheximide to cultures of carrageenin-elicited PMN. The NO production by PMN did not appear to be related to cell viability or apoptosis. Indeed, neither the blockade of NO generation by L-NIO nor the incubation of the neutrophils with a NO donor, S-nitroso-acetylpenicillamine (SNAP) modified the pattern of LDH release or DNA fragmentation. In summary, it appears that PMN migration triggers a continuous NO synthesis, and that NO produced by these cells is not related to their apoptosis.


2012 ◽  
Vol 113 (10) ◽  
pp. 1594-1603 ◽  
Author(s):  
Ioanna Sigala ◽  
Panayiotis Zacharatos ◽  
Stavroula Boulia ◽  
Dimitris Toumpanakis ◽  
Tatiana Michailidou ◽  
...  

Resistive breathing (encountered in chronic obstructive pulmonary disease and asthma) results in cytokine upregulation and decreased nitric oxide (NO) levels in the strenuously contracting diaphragm. NO can regulate gene expression. We hypothesized that endogenously produced NO downregulates cytokine production triggered by strenuous diaphragmatic contraction. Wistar rats treated with vehicle, the nonselective NO synthase inhibitor NG-nitro-l-arginine-methylester (l-NAME), or the NO donor diethylenetriamine-NONOate (DETA) were subjected to inspiratory resistive breathing (IRB; 50% of maximal inspiratory pressure) for 6 h or sham operation. Additional groups of rats were subjected to IRB for 6 h with concurrent administration of l-NAME and inhibitors of NF-κB (BAY-11-7082), ERK1/2 (PD98059), or P38 (SB203580). Inhibition of NO production (with l-NAME) resulted in upregulation of IRB-induced diaphragmatic IL-6, IL-10, IL-2, TNF-α, and IL-1β levels by 50%, 53%, 60%, 47%, and 45%, respectively. In contrast, the NO donor (DETA) attenuated the IRB-induced cytokine upregulation to levels characteristic of quietly breathing animals. l-NAME augmented IRB-induced activation of MAPKs (P38 and ERK1/2) and NF-κB, whereas DETA triggered the opposite effect. NF-κB and ERK1/2 inhibition in l-NAME-treated animals blunted the l-NAME-induced cytokine upregulation except IL-6, whereas P38 inhibition blunted all (including IL-6) cytokine upregulation. NO downregulates IRB-induced cytokine production in the strenuously contracting diaphragm through its action on MAPKs and NF-κB.


1998 ◽  
Vol 275 (1) ◽  
pp. H292-H300 ◽  
Author(s):  
Greg G. Geary ◽  
Diana N. Krause ◽  
Sue P. Duckles

Gender differences in the incidence of stroke and migraine appear to be related to circulating levels of estrogen; however, the underlying mechanisms are not yet understood. Using resistance-sized arteries pressurized in vitro, we have found that myogenic tone of rat cerebral arteries differs between males and females. This difference appears to result from estrogen enhancement of endothelial nitric oxide (NO) production. Luminal diameter was measured in middle cerebral artery segments from males and from females that were either untreated, ovariectomized (Ovx), or ovariectomized with estrogen replacement (Ovx + Est). The maximal passive diameters (0 Ca2++ 1 mM EDTA) of arteries from all four groups were identical. In response to a series of 10-mmHg step increases in transmural pressure (20–80 mmHg), myogenic tone was greater and vascular distensibility less in arteries from males and Ovx females compared with arteries from either untreated or Ovx + Est females. In the presence of N G-nitro-l-arginine methyl ester (l-NAME; 1 μM), an NO synthase inhibitor, myogenic tone was increased in all arteries, but the differences among arteries from the various groups were abolished. Addition ofl-arginine (1 mM) in the presence of l-NAME restored the differences in myogenic tone, suggesting that estrogen works through an NO-dependent mechanism in cerebral arteries. To determine the target of NO-dependent modulation of myogenic tone, we used tetraethylammonium (TEA; 1 mM) to inhibit large-conductance, calcium-activated K+(BKCa) channels. In the presence of TEA, the myogenic tone of arteries from all groups increased significantly; however, myogenic tone in arteries from males and Ovx females remained significantly greater than in arteries from either untreated or Ovx + Est females. This suggests that activity of BKCa channels influences myogenic tone but does not directly mediate the effects of estrogen. Estrogen appears to alter myogenic tone by increasing cerebrovascular NO production and/or action.


Parasitology ◽  
2002 ◽  
Vol 124 (1) ◽  
pp. 77-86 ◽  
Author(s):  
J. P. J. SAEIJ ◽  
W. B. VAN MUISWINKEL ◽  
A. GROENEVELD ◽  
G. F. WIEGERTJES

Trypanoplasma borreli and Trypanosoma carassii are kinetoplastid parasites infecting cyprinid fish. We investigated the role of nitric oxide (NO) in immune modulation during T. borreli and T. carassii infection of carp. Phagocytic cells from different organs produced NO and serum nitrate levels increased, demonstrating that T. borreli activates NO production in vivo. In contrast, T. carassii did not induce NO production in vivo and inhibited LPS-induced NO production in vitro. Production of NO was detrimental to the host as T. borreli-infected carp treated with the inducible NO synthase inhibitor aminoguanidine had a higher survival than infected control carp. This detrimental effect can be explained (in part) by the toxicity of NO to cells in vitro as NO inhibited the proliferative response of blood and spleen leukocytes. Head-kidney phagocytes were resistant to the immunosuppressive effects of NO in vitro. The NO-inducing activity of T. borreli may be an adaptation developed to ensure survival and immune evasion in the fish host. Apparently, T. carassii has adopted another strategy by deactivating specific functions of phagocytes. Both strategies may ensure long-term survival of the parasite.


1996 ◽  
Vol 314 (1) ◽  
pp. 109-113 ◽  
Author(s):  
Michel LAURENT ◽  
Michel LEPOIVRE ◽  
Jean-Pierre TENU

Inducible nitric oxide (NO) synthase produces a long-lasting NO flux which can exert cytotoxic effects on target cells. A prerequisite for the understanding of the molecular basis of NO action is quantitative data on the availability of this small neutral radical molecule at both the spatial and temporal levels. The limits of NO availability depend on the respective rates of NO production, diffusion and autoxidation by molecular oxygen. Kinetic modelling of these processes has been performed for a widely used experimental system consisting of a monolayer of adherent cells cultured in vitro for hours in unstirred culture medium. It appears that: (i) the maximal NO concentration in the culture is in the immediate vicinity of the monolayer, where target cells will sediment; (ii) the steady-state NO concentration in this area is lower than 4 to 5 μM; and (iii) measurements of nitrite/nitrate or citrulline accumulation in the bulk cell medium culture during a given time period significantly underestimate (by a factor of up to 3 to 4) the true rate of NO synthesis at the level of the producer cell. This rate can be, nevertheless, easily estimated from the rate of production of the stable NO synthase products.


1999 ◽  
Vol 86 (4) ◽  
pp. 1273-1282 ◽  
Author(s):  
Shu-Yu Sun ◽  
W. Wang ◽  
I. H. Zucker ◽  
H. D. Schultz

An enhanced peripheral chemoreflex has been documented in patients with chronic heart failure (CHF). This study aimed to examine the characteristics of carotid body (CB) chemoreceptors in response to isocapnic hypoxia in a rabbit model of pacing-induced CHF and to evaluate the possible role that nitric oxide (NO) plays in the altered characteristics. The chemosensitive characteristics of the CB were evaluated by recording single-unit activity from the carotid sinus nerve in both an intact and a vascularly isolated preparation. It was found that the baseline discharge under normoxia (intact preparation: arterial [Formula: see text] 90–95 Torr; isolated preparation: [Formula: see text]100–110 Torr) and the chemosensitivity in response to graded hypoxia ([Formula: see text] 40–70 Torr) were enhanced in CHF vs. sham rabbits. These alterations were independent of the CB preparations (intact vs. isolated). NO synthase inhibition by N ω-nitro-l-arginine increased the baseline discharge and the chemosensitivity in the intact preparation, whereas l-arginine (10−5 M) inhibited the baseline discharge and the chemosensitivity in the isolated preparation in sham but not in CHF rabbits. S-nitroso- N-acetylpenicillamine, an NO donor, inhibited the baseline discharge and the chemosensitivity in both CB preparations in CHF rabbits but only in the isolated preparation in sham rabbits. The amount of NO produced in vitro by the CB under normoxia was less in CHF rabbits than in sham rabbits ( P < 0.05). NO synthase-positive varicosities of nerve fibers within the CB were less in CHF rabbits than in sham rabbits ( P < 0.05). These data indicate that an enhanced input from CB occurs in the rabbit model of pacing-induced CHF and that an impairment of NO production may contribute to this alteration.


2003 ◽  
Vol 198 (5) ◽  
pp. 705-713 ◽  
Author(s):  
Martin I. Voskuil ◽  
Dirk Schnappinger ◽  
Kevin C. Visconti ◽  
Maria I. Harrell ◽  
Gregory M. Dolganov ◽  
...  

An estimated two billion persons are latently infected with Mycobacterium tuberculosis. The host factors that initiate and maintain this latent state and the mechanisms by which M. tuberculosis survives within latent lesions are compelling but unanswered questions. One such host factor may be nitric oxide (NO), a product of activated macrophages that exhibits antimycobacterial properties. Evidence for the possible significance of NO comes from murine models of tuberculosis showing progressive infection in animals unable to produce the inducible isoform of NO synthase and in animals treated with a NO synthase inhibitor. Here, we show that O2 and low, nontoxic concentrations of NO competitively modulate the expression of a 48-gene regulon, which is expressed in vivo and prepares bacilli for survival during long periods of in vitro dormancy. NO was found to reversibly inhibit aerobic respiration and growth. A heme-containing enzyme, possibly the terminal oxidase in the respiratory pathway, likely senses and integrates NO and O2 levels and signals the regulon. These data lead to a model postulating that, within granulomas, inhibition of respiration by NO production and O2 limitation constrains M. tuberculosis replication rates in persons with latent tuberculosis.


1999 ◽  
Vol 86 (6) ◽  
pp. 1944-1949 ◽  
Author(s):  
George J. Crystal ◽  
Xiping Zhou ◽  
Ayman A. Halim ◽  
Syed Alam ◽  
Mohammad El-Orbany ◽  
...  

The effects of the NO synthase inhibitor N G-nitro-l-arginine methyl ester (l-NAME) and the NO donor sodium nitroprusside (SNP) on whole body O2 consumption (V˙o 2) were assessed in 16 dogs anesthetized with fentanyl or isoflurane. Cardiac output (CO) and mean arterial pressure (MAP) were measured with standard methods and were used to calculate V˙o 2and systemic vascular resistance (SVR). Data were obtained in each dog under the following conditions: 1) Control 1, 2) SNP (30 μg ⋅ kg−1 ⋅ min−1iv) 3) Control 2, 4)l-NAME (10 mg/kg iv), and 5) SNP and adenosine (30 and 600 μg ⋅ kg−1 ⋅ min−1iv, respectively) after l-NAME. SNP reduced MAP by 29 ± 3% and SVR by 47 ± 3%, while it increased CO by 39 ± 9%.l-NAME had opposite effects; it increased MAP and SVR by 24 ± 4% and 103 ± 11%, respectively, and it decreased CO by 37 ± 3%. Neither agent changedV˙o 2 from the baseline value of 4.3 ± 0.2 ml ⋅ min−1 ⋅ kg−1, since the changes in CO were offset by changes in the arteriovenous O2 difference. Both SNP and adenosine returned CO to pre-l-NAME values, butV˙o 2 was unaffected. We conclude that 1) basally released endogenous NO had a tonic systemic vasodilator effect, but it had no influence on V˙o 2; 2) SNP did not alterV˙o 2 before or after inhibition of endogenous NO production; 3) the inability ofl-NAME to increaseV˙o 2 was not because CO, i.e., O2 supply, was reduced below the critical level.


Sign in / Sign up

Export Citation Format

Share Document