Nitric oxide regulates cytokine induction in the diaphragm in response to inspiratory resistive breathing

2012 ◽  
Vol 113 (10) ◽  
pp. 1594-1603 ◽  
Author(s):  
Ioanna Sigala ◽  
Panayiotis Zacharatos ◽  
Stavroula Boulia ◽  
Dimitris Toumpanakis ◽  
Tatiana Michailidou ◽  
...  

Resistive breathing (encountered in chronic obstructive pulmonary disease and asthma) results in cytokine upregulation and decreased nitric oxide (NO) levels in the strenuously contracting diaphragm. NO can regulate gene expression. We hypothesized that endogenously produced NO downregulates cytokine production triggered by strenuous diaphragmatic contraction. Wistar rats treated with vehicle, the nonselective NO synthase inhibitor NG-nitro-l-arginine-methylester (l-NAME), or the NO donor diethylenetriamine-NONOate (DETA) were subjected to inspiratory resistive breathing (IRB; 50% of maximal inspiratory pressure) for 6 h or sham operation. Additional groups of rats were subjected to IRB for 6 h with concurrent administration of l-NAME and inhibitors of NF-κB (BAY-11-7082), ERK1/2 (PD98059), or P38 (SB203580). Inhibition of NO production (with l-NAME) resulted in upregulation of IRB-induced diaphragmatic IL-6, IL-10, IL-2, TNF-α, and IL-1β levels by 50%, 53%, 60%, 47%, and 45%, respectively. In contrast, the NO donor (DETA) attenuated the IRB-induced cytokine upregulation to levels characteristic of quietly breathing animals. l-NAME augmented IRB-induced activation of MAPKs (P38 and ERK1/2) and NF-κB, whereas DETA triggered the opposite effect. NF-κB and ERK1/2 inhibition in l-NAME-treated animals blunted the l-NAME-induced cytokine upregulation except IL-6, whereas P38 inhibition blunted all (including IL-6) cytokine upregulation. NO downregulates IRB-induced cytokine production in the strenuously contracting diaphragm through its action on MAPKs and NF-κB.

Blood ◽  
1998 ◽  
Vol 91 (11) ◽  
pp. 4311-4320 ◽  
Author(s):  
Katerina Chlichlia ◽  
Marcus E. Peter ◽  
Marian Rocha ◽  
Carsten Scaffidi ◽  
Mariana Bucur ◽  
...  

Abstract Nitric oxide (NO), an important effector molecule involved in immune regulation and host defense, was shown to induce apoptosis in lymphoma cells. In the present report the NO donor glycerol trinitrate was found to induce apoptosis in Jurkat cells that are sensitive to CD95-mediated kill. In contrast, a CD95-resistant Jurkat subclone showed substantial protection from apoptosis after exposure to NO. NO induced mRNA expression of CD95 (APO-1/Fas) and TRAIL/APO-2 ligands. Moreover, NO triggered apoptosis in freshly isolated human leukemic lymphocytes which were also sensitive to anti-CD95 treatment. The ability of NO to induce apoptosis was completely blocked by a broad-spectrum ICE (interleukin-1β converting enzyme)-protease/caspase inhibitor and correlated with FLICE/caspase-8 activation. This activation was abrogated in some neoplastic lymphoid cells but not in others by the inhibitor of protein synthesis cycloheximide. Our results were confirmed using an in vitro experimental model of coculture of human lymphoid target cells with activated bovine endothelial cells generating NO as effectors. Furthermore, the inhibition of endogenous NO production with the inducible NO synthase inhibitor NG-monomethyl-L-arginine caused a complete abrogation of the apoptotic effect. Our data provide evidence that NO-induced apoptosis in human neoplastic lymphoid cells strictly requires activation of caspases, in particular FLICE, the most CD95 receptor-proximal caspase. Depending on the cell line tested this activation required or was independent of the CD95 receptor/ligand system.


2012 ◽  
Vol 213 (1) ◽  
pp. 59-65 ◽  
Author(s):  
Zhixiong He ◽  
Zhiliang Tan ◽  
Zhihong Sun ◽  
Karen A Beauchemin ◽  
Shaoxun Tang ◽  
...  

Twelve pregnant goats were assigned to three dietary treatments during late gestation, namely control (C: metabolizable energy, 5.75 MJ/kg; crude protein, 12.6% and dry matter basis), 40% protein restricted (PR) and 40% energy restricted (ER), to examine the effects of nutrient restriction on the immune status of pregnant goats. Plasma was sampled on day 90, 125 and 145 from pregnant goats to determine cytokine production (interleukin 2 (IL2), IL6) and tumor necrosis factor α (TNFα)). Peripheral blood mononuclear cells were obtained on day 145 and activated by lipopolysaccharide to determine cytokine production, and then exposed (PR and ER) to sodium nitroprusside (SNP), a nitric oxide (NO) donor, or control to NG-nitro-l-arginine methyl ester hydrochloride (l-NAME), an NO synthase inhibitor to explore the role of NO in regulating cytokine production. Plasma IL2, IL6 and TNFα were not altered during gestation, but NO was increased (P<0.05) at gestation day 145 for PR and ER.In vitro, compared with control, NO was lower for PR and ER (P<0.001), but IL6 was higher for PR (P<0.001) and ER (P=0.11). The addition of SNP decreased IL6 (P<0.001, PR;P=0.12, ER) in the malnourished group, andl-NAME increased (P<0.001) IL6 in control compared to those treatments without SNP orl-NAME. The results indicate that plasma NO acted as a regulator of cytokine function exhibiting negative feedback to maintain steady plasma IL6 concentration in PR or ER goats during late gestation.


Blood ◽  
1998 ◽  
Vol 91 (11) ◽  
pp. 4311-4320 ◽  
Author(s):  
Katerina Chlichlia ◽  
Marcus E. Peter ◽  
Marian Rocha ◽  
Carsten Scaffidi ◽  
Mariana Bucur ◽  
...  

Nitric oxide (NO), an important effector molecule involved in immune regulation and host defense, was shown to induce apoptosis in lymphoma cells. In the present report the NO donor glycerol trinitrate was found to induce apoptosis in Jurkat cells that are sensitive to CD95-mediated kill. In contrast, a CD95-resistant Jurkat subclone showed substantial protection from apoptosis after exposure to NO. NO induced mRNA expression of CD95 (APO-1/Fas) and TRAIL/APO-2 ligands. Moreover, NO triggered apoptosis in freshly isolated human leukemic lymphocytes which were also sensitive to anti-CD95 treatment. The ability of NO to induce apoptosis was completely blocked by a broad-spectrum ICE (interleukin-1β converting enzyme)-protease/caspase inhibitor and correlated with FLICE/caspase-8 activation. This activation was abrogated in some neoplastic lymphoid cells but not in others by the inhibitor of protein synthesis cycloheximide. Our results were confirmed using an in vitro experimental model of coculture of human lymphoid target cells with activated bovine endothelial cells generating NO as effectors. Furthermore, the inhibition of endogenous NO production with the inducible NO synthase inhibitor NG-monomethyl-L-arginine caused a complete abrogation of the apoptotic effect. Our data provide evidence that NO-induced apoptosis in human neoplastic lymphoid cells strictly requires activation of caspases, in particular FLICE, the most CD95 receptor-proximal caspase. Depending on the cell line tested this activation required or was independent of the CD95 receptor/ligand system.


1999 ◽  
Vol 86 (6) ◽  
pp. 1944-1949 ◽  
Author(s):  
George J. Crystal ◽  
Xiping Zhou ◽  
Ayman A. Halim ◽  
Syed Alam ◽  
Mohammad El-Orbany ◽  
...  

The effects of the NO synthase inhibitor N G-nitro-l-arginine methyl ester (l-NAME) and the NO donor sodium nitroprusside (SNP) on whole body O2 consumption (V˙o 2) were assessed in 16 dogs anesthetized with fentanyl or isoflurane. Cardiac output (CO) and mean arterial pressure (MAP) were measured with standard methods and were used to calculate V˙o 2and systemic vascular resistance (SVR). Data were obtained in each dog under the following conditions: 1) Control 1, 2) SNP (30 μg ⋅ kg−1 ⋅ min−1iv) 3) Control 2, 4)l-NAME (10 mg/kg iv), and 5) SNP and adenosine (30 and 600 μg ⋅ kg−1 ⋅ min−1iv, respectively) after l-NAME. SNP reduced MAP by 29 ± 3% and SVR by 47 ± 3%, while it increased CO by 39 ± 9%.l-NAME had opposite effects; it increased MAP and SVR by 24 ± 4% and 103 ± 11%, respectively, and it decreased CO by 37 ± 3%. Neither agent changedV˙o 2 from the baseline value of 4.3 ± 0.2 ml ⋅ min−1 ⋅ kg−1, since the changes in CO were offset by changes in the arteriovenous O2 difference. Both SNP and adenosine returned CO to pre-l-NAME values, butV˙o 2 was unaffected. We conclude that 1) basally released endogenous NO had a tonic systemic vasodilator effect, but it had no influence on V˙o 2; 2) SNP did not alterV˙o 2 before or after inhibition of endogenous NO production; 3) the inability ofl-NAME to increaseV˙o 2 was not because CO, i.e., O2 supply, was reduced below the critical level.


2010 ◽  
Vol 151 (51) ◽  
pp. 2083-2088 ◽  
Author(s):  
Balázs Antus

A kilégzett levegőben mérhető nitrogén-monoxid a legszélesebb körben vizsgált légúti biomarker. A stabil állapotú krónikus obstruktív tüdőbetegségben a kilégzett nitrogén-monoxid-szint hasonló vagy csak kismértékben emelkedett az egészségesekhez képest. Mivel a nitrogén-monoxid-szint szoros összefüggést mutat a légúti eosinophilia mértékével, és mivel az eosinophil típusú légúti gyulladás szteroidokra érzékenyebb, az emelkedett nitrogén-monoxid-szinttel rendelkező betegek jobb válaszkészséget mutatnak az inhalációs vagy szisztémás kortikoszteroidkezelésre. A krónikus obstruktív tüdőbetegség akut exacerbatiója során a kilégzett nitrogén-monoxid szintje megemelkedik, majd ennek kezelése után csökken. Mivel a nitrogén-monoxid-szint és a kezelés során elért légzésfunkciós javulás szoros korrelációt mutat egymással, a nitrogén-monoxid-méréssel a terápiás válasz megjósolható. Összefoglalva: a nitrogén-monoxid-méréssel a krónikus obstruktív tüdőbetegségben szenvedő betegek olyan alcsoportját lehet elkülöníteni, amelynek szteroidérzékenysége nagyobb. Orv. Hetil., 2010, 151, 2083–2088.


1998 ◽  
Vol 274 (1) ◽  
pp. C245-C252 ◽  
Author(s):  
Junsuke Igarashi ◽  
Masashi Nishida ◽  
Shiro Hoshida ◽  
Nobushige Yamashita ◽  
Hiroaki Kosaka ◽  
...  

The effects of nitric oxide (NO) produced by cardiac inducible NO synthase (iNOS) on myocardial injury after oxidative stress were examined. Interleukin-1β induced cultured rat neonatal cardiac myocytes to express iNOS. After induction of iNOS,l-arginine enhanced NO production in a concentration-dependent manner. Glutathione peroxidase (GPX) activity in myocytes was attenuated by elevated iNOS activity and by an NO donor, S-nitroso- N-acetyl-penicillamine (SNAP). Although NO production by iNOS did not induce myocardial injury, NO augmented release of lactate dehydrogenase from myocyte cultures after addition of H2O2(0.1 mM, 1 h). Inhibition of iNOS with Nω-nitro-l-arginine methyl ester ameliorated the effects of NO-enhancing treatments on myocardial injury and GPX activity. SNAP augmented the myocardial injury induced by H2O2. Inhibition of GPX activity with antisense oligodeoxyribonucleotide for GPX mRNA increased myocardial injury by H2O2. Results suggest that the induction of cardiac iNOS promotes myocardial injury due to oxidative stress via inactivation of the intrinsic antioxidant enzyme, GPX.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Ping-Ho Chen ◽  
Yaw-Syan Fu ◽  
Yun-Ming Wang ◽  
Kun-Han Yang ◽  
Danny Ling Wang ◽  
...  

Hydrogen sulfide (H2S) and nitric oxide (NO), two endogenous gaseous molecules in endothelial cells, got increased attention with respect to their protective roles in the cardiovascular system. However, the details of the signaling pathways between H2S and NO in endothelia cells remain unclear. In this study, a treatment with NaHS profoundly increased the expression and the activity of endothelial nitric oxide synthase. Elevated gaseous NO levels were observed by a novel and specific fluorescent probe, 5-amino-2-(6-hydroxy-3-oxo-3H-xanthen-9-yl)benzoic acid methyl ester (FA-OMe), and quantified by flow cytometry. Further study indicated an increase of upstream regulator for eNOS activation, AMP-activated protein kinase (AMPK), and protein kinase B (Akt). By using a biotin switch, the level of NO-mediated protein S-nitrosylation was also enhanced. However, with the addition of the NO donor, NOC-18, the expressions of cystathionine-γ-lyase, cystathionine-β-synthase, and 3-mercaptopyruvate sulfurtransferase were not changed. The level of H2S was also monitored by a new designed fluorescent probe, 4-nitro-7-thiocyanatobenz-2-oxa-1,3-diazole (NBD-SCN) with high specificity. Therefore, NO did not reciprocally increase the expression of H2S-generating enzymes and the H2S level. The present study provides an integrated insight of cellular responses to H2S and NO from protein expression to gaseous molecule generation, which indicates the upstream role of H2S in modulating NO production and protein S-nitrosylation.


2005 ◽  
Vol 289 (6) ◽  
pp. F1324-F1332 ◽  
Author(s):  
Manish M. Tiwari ◽  
Robert W. Brock ◽  
Judit K. Megyesi ◽  
Gur P. Kaushal ◽  
Philip R. Mayeux

Acute renal failure (ARF) is a frequent and serious complication of endotoxemia caused by lipopolysaccharide (LPS) and contributes significantly to mortality. The present studies were undertaken to examine the roles of nitric oxide (NO) and caspase activation on renal peritubular blood flow and apoptosis in a murine model of LPS-induced ARF. Male C57BL/6 mice treated with LPS ( Escherichia coli) at a dose of 10 mg/kg developed ARF at 18 h. Renal failure was associated with a significant decrease in peritubular capillary perfusion. Vessels with no flow increased from 7 ± 3% in the saline group to 30 ± 4% in the LPS group ( P < 0.01). Both the inducible NO synthase inhibitor l- N6-1-iminoethyl-lysine (l-NIL) and the nonselective caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp fluoromethylketone (Z-VAD) prevented renal failure and reversed perfusion deficits. Renal failure was also associated with an increase in renal caspase-3 activity and an increase in renal apoptosis. Both l-NIL and Z-VAD prevented these changes. LPS caused an increase in NO production that was blocked by l-NIL but not by Z-VAD. Taken together, these data suggest NO-mediated activation of renal caspases and the resulting disruption in peritubular blood flow are an important mechanism of LPS-induced ARF.


Sign in / Sign up

Export Citation Format

Share Document