Fas/APO-1 (CD95)–Mediated Apoptosis Is Activated by Interferon-γ and Interferon- in Interleukin-6 (IL-6)–Dependent and IL-6–Independent Multiple Myeloma Cell Lines

Blood ◽  
1998 ◽  
Vol 92 (8) ◽  
pp. 2914-2923 ◽  
Author(s):  
Helena Spets ◽  
Patrik Georgii-Hemming ◽  
Jan Siljason ◽  
Kenneth Nilsson ◽  
Helena Jernberg-Wiklund

Abstract A poor response to Fas-induced apoptosis is evident in some multiple myeloma (MM) cell lines and primary cells. In this study, we have examined the possibility to increase the sensitivity to Fas-induced apoptosis by pretreatment of MM cells with interferon-γ (IFN-γ) or interferon- (IFN-). Both IFN-γ and IFN- markedly increased the Fas-induced apoptosis in all cell lines tested (U-266-1970, U-266-1984, and U-1958). In the U-266-1970 and U-1958 cell lines, pretreatment with either IFN-γ or IFN- also inhibited proliferation in a dose-dependent manner. In contrast, IFN-γ activation of the Fas death pathway in the U-266-1984 cells was not accompanied by growth inhibition. Incubation with the IFNs increased the Fas antigen expression in one of three cell lines but did not alter the expression of Bcl-2 or Bax. The IFNs are important regulators of growth and survival in MM cells. Our results suggest that activation of Fas-mediated apoptosis is a novel mechanism by which the IFNs exert inhibitory effects on MM cells. © 1998 by The American Society of Hematology.

Blood ◽  
1998 ◽  
Vol 92 (8) ◽  
pp. 2914-2923 ◽  
Author(s):  
Helena Spets ◽  
Patrik Georgii-Hemming ◽  
Jan Siljason ◽  
Kenneth Nilsson ◽  
Helena Jernberg-Wiklund

A poor response to Fas-induced apoptosis is evident in some multiple myeloma (MM) cell lines and primary cells. In this study, we have examined the possibility to increase the sensitivity to Fas-induced apoptosis by pretreatment of MM cells with interferon-γ (IFN-γ) or interferon- (IFN-). Both IFN-γ and IFN- markedly increased the Fas-induced apoptosis in all cell lines tested (U-266-1970, U-266-1984, and U-1958). In the U-266-1970 and U-1958 cell lines, pretreatment with either IFN-γ or IFN- also inhibited proliferation in a dose-dependent manner. In contrast, IFN-γ activation of the Fas death pathway in the U-266-1984 cells was not accompanied by growth inhibition. Incubation with the IFNs increased the Fas antigen expression in one of three cell lines but did not alter the expression of Bcl-2 or Bax. The IFNs are important regulators of growth and survival in MM cells. Our results suggest that activation of Fas-mediated apoptosis is a novel mechanism by which the IFNs exert inhibitory effects on MM cells. © 1998 by The American Society of Hematology.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 4896-4896
Author(s):  
Qingxian Bai ◽  
Qifa Liu

Abstract Abstract 4896 BackgroundF Multiple myeloma(MM) is a malignant plasma disease, which is characterized as high relapse rate and high resistance to chemotherapy. Curcumin is a polyphenol derived from the rhizome of Curcuma spp. It possesses diverse pharmacologic actions, such as antitumor, anti-inflammatory,anti- oxidation properties .Curcumin has the property of inhibit multiple tumor cell lines, in which included multiple myeloma cell. The real mechanism is not completely clear yet. We explored the mechanisms of curcumin on human multiple myeloma cell lines (RPMI8226 and H929), and investigated whether the combination of curcumin and adriamycin(Adr) has a synergistic effect. MethodsF The effect of curcumin on proliferation of RPMI8226 and H929 was observed with MTT assay. The synergetic effect of curcumin and Adr was analyzed by median-effect principle. Cell cycle distribution and apoptosis were studied with flow cytometry. Expression of surviving, bcl-2, bax mRNA was detected by RT-PCR. ResultsF Curcumin could inhibit the proliferation of RPMI8226 and H929 cells in a time- and dose-dependent manner. The IC50 values for RPMI8226 and H929 cell line were 12.15 μmol/L,17.24μmol/L respectively. The combination of curcumin and Adr showed synergistic effect even at low concentration of Adr. Apoptotic ratio of treated cells was significantly higher than untreated controls (36.9% vs 10.6%, p<0.05). Cells treated with curcumin showed cell cycle arrest at G2/M phase. Curcumin upregulated expression of survivin, bcl-2, while bax mRNA was significantly downregulated. ConclusionF Curcumin could suppress the proliferation of multiple myeloma cells and induce apoptosis. Adr combining with curcumin can show synergistic effect at low concentration of Adr. The mechanism of curcumin's antitumous effect might be related to down-regulation of surviving, bcl-2 mRNA and up-regulation of bax mRNA. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 765-765 ◽  
Author(s):  
Keisuke Ito ◽  
Tomonori Nakazato ◽  
Yoshitaka Miyakawa ◽  
Ming Ji Xian ◽  
Taketo Yamada ◽  
...  

Abstract 1′-acetoxychavicol acetate (ACA) is a component of traditional Asian condiment, obtained from rhizomes of the commonly used ethno-medicinal plant Languas galanga (Zingiberacetate). Recent extensive studies revealed that ACA has potent chemopreventive effects against various tumors. More recently, we have reported that ACA induces apoptosis of myeloid leukemic cells via mitochondrial- and Fas-mediated dual pathway. The transcription factor NF-κB confers significant survival potential in myeloma cells; therefore, it has emerged as a therapeutic target for the treatment of multiple myeloma. Multiple myeloma is an incurable hematological disorders, which has been fatal outcome despite of high dose chemotherapy with stem cell transplantation; therefore, a novel biologically based therapeutic approach is desired. In this study, we investigated the effects of ACA on myeloma cells in vitro and in vivo, and further examined the molecular mechanisms of ACA-induced apoptosis in myeloma cells. ACA dramatically inhibited cellular growth of various human myeloma cell lines (RPMI8226, U266, IM9, and HS-Sultan) as well as freshly isolated myeloma cells from patients, but not normal bone marrow cells, in a dose (0-20 μM)- and time (0-24 h)-dependent manner. Cultivation with 10 μM ACA rapidly increased the population of cells in the G0/G1 phase with a reduction of cells in the S phase, and a strong induction of apoptosis was shown by the appearance of a hypodiploid DNA peak with sub-G1 DNA content 3 h after treatment. Treatment with ACA induced both caspase-3, -9, and caspase-8 activities, suggesting that ACA-induced apoptosis in myeloma cells mediates both mitochondrial- and Fas-dependent pathways. Furthermore, we investigated the effects of ACA on NF-κB activity in myeloma cells, and were able to demonstrate that ACA significantly inhibited serine phosphorylation and degradation of IκBα in a time-dependent manner. ACA rapidly decreased the nuclear expression of NF-κB, but increased the accumulation of cytosol NF-κB in RPMI8226 cells, indicating that ACA inhibits translocation of NF-κB from the cytosol to the nucleus. In addition, we also confirmed the inhibitory effects of ACA on NF-κB activation by ELISA in myeloma cell lines and fresh samples. ACA had a synergistic proapoptotic effect with another NF-κB inhibitor, MG-132 and TLCK. In contrast, NF-κB activator, PMA, dramatically abrogated ACA-induced apoptosis in myeloma cells. These in vitro studies prompted us to examine whether the effects of ACA are equally valid in vivo. To evaluate the effects of ACA in vivo, RPMI8226-transplanted NOD/SCID mice were treated with ACA. Tumor weight decreased in the mice that were injected ACA (mean weight: 0.04±0.06 g in the ACA-treated group vs. 0.63±0.29 g in the control group; p<0.01). During the treatment, ACA-treated mice appeared healthy, and pathological analysis at autopsy revealed no ACA-induced tissue changes in any of the organ, indicating that ACA might be developed as a new potent anti-cancer agent for the management of multiple myeloma. In conclusion, ACA has an inhibitory activity of NF-κB, and induces apoptosis of myeloma cells in vitro and in vivo. Therefore, ACA provides the new biologically based therapy for the treatment of multiple myeloma patients as a novel NF-κB inhibitor.


2019 ◽  
Vol 519 (3) ◽  
pp. 597-604
Author(s):  
Rebecca S.S. Barbosa ◽  
Paola M. Dantonio ◽  
Taís Guimarães ◽  
Mariana B. de Oliveira ◽  
Veruska L. Fook Alves ◽  
...  

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3675-3675
Author(s):  
Alejo A Morales ◽  
David Siefker ◽  
Shannon M Matulis ◽  
Delia M Gutman ◽  
Lawrence H Boise

Abstract ABT-737 is a Bad-like BH3 mimetic and an effective inhibitor of the anti-apoptotic Bcl-2 family members Bcl-2, Bcl-xL and Bcl-w, but not Mcl-1. Recent studies have shown this new drug as a promising anti-cancer agent with activity in multiple myeloma cells. The purpose of this study was to evaluate the role of Bcl-2 family members in both determining the sensitivity and the mechanism of action of ABT-737 in multiple myeloma cell lines. ABT-737, as a single agent, induced apoptosis in six myeloma cell lines, although the sensitivity was quite different among cell lines. Three cell lines 8226/S, MM.1s and KMS18, were highly sensitive to ABT-737 with EC50 values of 0.30, 0.39 and 0.58 μM, respectively. In contrast, three cell lines, KMS11, U266 and OPM2 displayed lower sensitivity to the drug with EC50 values of 1.60, 2.58 and 2.57 μM ABT-737. No correlation between the sensitivity to ABT-737 and the expression pattern of the Bcl-2 family members was found. Interestingly, Mcl-1, a critical anti-apoptotic protein involved in myeloma cell survival that has also been shown to confer resistance to ABT-737, did not correlate with sensitivity to the drug. Bfl-1, an anti-apoptotic Bcl-2 family member with similar functions to Mcl-1, was only expressed in two sensitive cell lines, MM.1s and KMS18. Since the expression pattern did not reveal any strong correlation, we determined the effects of ABT-737 on association of Bcl-2 proteins. Co-immunoprecipitation experiments in MM.1s and KMS11, demonstrated that ABT-737 released Bak and Bim from Bcl-xL and Bim from Bcl-2 while no change was observed for Bak and Bim bound to Mcl-1. A closer look at the interaction of Bcl-2 family members revealed that Bak is equally bound to Mcl-1 and Bcl-xL in the less sensitive cell lines while it is primarily bound to Bcl-xL in the more sensitive cell lines 8226/S and KMS18. Interestingly, Bak in equally bound to Mcl-1 and Bcl-xL in MM.1s, the third sensitive cell line; however, Bim is also highly bound to Bcl-xL, suggesting an easier release of Bak and Bim by ABT-737 from a Bim-primed-Bcl-xL. Consistent with this idea, Bcl-xL overexpression significantly protected 8226/S but not KMS11 from ABT-737-induced death. Additionally, while silencing of Bim significantly protected MM.1s and KMS11 from ABT-737-induced apoptosis, release of Bak from Bcl-xL was not observed after Bim silencing in the MM.1s cells. Together these data suggest that the interaction pattern not the expression pattern of Bcl-2 proteins is a more accurate measure of ABT-737 function in cells. This is important in diseases like multiple myeloma where Mcl-1 in addition to other anti-apoptotic Bcl-2 proteins are typically expressed.


Planta Medica ◽  
2013 ◽  
Vol 79 (09) ◽  
pp. 775-781 ◽  
Author(s):  
Qinghong Yu ◽  
Binhai Chen ◽  
Xiang Zhang ◽  
WenBin Qian ◽  
Baodong Ye ◽  
...  

2000 ◽  
Vol 111 (4) ◽  
pp. 1118-1121 ◽  
Author(s):  
A. Bellahcene ◽  
I. Van Riet ◽  
C. de Greef ◽  
N. Antoine ◽  
M. F. Young ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document