Suppression of Interleukin-12 Production by Human Monocytes After Preincubation With Lipopolysaccharide

Blood ◽  
1999 ◽  
Vol 94 (5) ◽  
pp. 1717-1726
Author(s):  
Miriam Wittmann ◽  
Vivi-Ann Larsson ◽  
Petra Schmidt ◽  
Gabriele Begemann ◽  
Alexander Kapp ◽  
...  

Interleukin-12 (IL-12) is a potent proinflammatory and immunoregulatory cytokine skewing T lymphocytes to express a type 1 cytokine pattern. Optimal expression of IL-12 mRNA and bioactivity in vitro requires specific priming of monocytes by interferon-γ (IFN-γ) or granulocyte-macrophage colony-stimulating factor (GM-CSF) before lipopolysaccharide (LPS) stimulation. We show here for the first time that the production of IL-12 by IFN-γ– or GM-CSF–primed human monocytes can be completely suppressed by preincubation with LPS (fromEscherichia coli Serotype 055:B5) for 6 to 24 hours before the priming procedure. A dose-dependent suppression of IL-12p70 was measured on the levels of intracellular cytokine production and cytokine secretion. mRNA studies on the expression of p40 and p35 showed an LPS-induced downregulation of both subunits. The results of several different experimental approaches suggest that IL-12 downregulation was not due to endogenous IL-10, IL-4, prostaglandin E2 (PGE2), tumor necrosis factor- (TNF-), or nitric oxide (NO) production induced by LPS. Moreover, preincubation of monocytes with LPS did not lead to a downregulation of the CD14 antigen, which is an LPS receptor. LPS preincubation in this experimental setting did not result in a general hyporesponsiveness of the monocytes, as IL-6 production as well as IFN-γ–induced upregulation of CD54 did not decline. Downregulation of IL-12 was not due to changes in mRNA stability. These findings show that the immunoregulatory important cytokine, IL-12, underlies itself a complex regulation.

Blood ◽  
1999 ◽  
Vol 94 (5) ◽  
pp. 1717-1726 ◽  
Author(s):  
Miriam Wittmann ◽  
Vivi-Ann Larsson ◽  
Petra Schmidt ◽  
Gabriele Begemann ◽  
Alexander Kapp ◽  
...  

Abstract Interleukin-12 (IL-12) is a potent proinflammatory and immunoregulatory cytokine skewing T lymphocytes to express a type 1 cytokine pattern. Optimal expression of IL-12 mRNA and bioactivity in vitro requires specific priming of monocytes by interferon-γ (IFN-γ) or granulocyte-macrophage colony-stimulating factor (GM-CSF) before lipopolysaccharide (LPS) stimulation. We show here for the first time that the production of IL-12 by IFN-γ– or GM-CSF–primed human monocytes can be completely suppressed by preincubation with LPS (fromEscherichia coli Serotype 055:B5) for 6 to 24 hours before the priming procedure. A dose-dependent suppression of IL-12p70 was measured on the levels of intracellular cytokine production and cytokine secretion. mRNA studies on the expression of p40 and p35 showed an LPS-induced downregulation of both subunits. The results of several different experimental approaches suggest that IL-12 downregulation was not due to endogenous IL-10, IL-4, prostaglandin E2 (PGE2), tumor necrosis factor- (TNF-), or nitric oxide (NO) production induced by LPS. Moreover, preincubation of monocytes with LPS did not lead to a downregulation of the CD14 antigen, which is an LPS receptor. LPS preincubation in this experimental setting did not result in a general hyporesponsiveness of the monocytes, as IL-6 production as well as IFN-γ–induced upregulation of CD54 did not decline. Downregulation of IL-12 was not due to changes in mRNA stability. These findings show that the immunoregulatory important cytokine, IL-12, underlies itself a complex regulation.


Blood ◽  
2002 ◽  
Vol 100 (12) ◽  
pp. 4193-4200 ◽  
Author(s):  
Pierre-Yves Berclaz ◽  
Yoko Shibata ◽  
Jeffrey A. Whitsett ◽  
Bruce C. Trapnell

Severely impaired pulmonary microbial clearance was observed in granulocyte-macrophage colony-stimulating factor (GM-CSF)–deficient mice. To determine mechanisms by which GM-CSF mediates lung host defense, FcγR-mediated phagocytosis (opsonophagocytosis) by alveolar macrophages (AMs) was assessed in GM-CSF–sufficient (GM+/+) and –deficient (GM−/−) mice and in GM−/− mice expressing GM-CSF only in the lungs from a surfactant protein C (SPC) promoter (SPC-GM+/+/GM−/−). Opsonophagocytosis by GM−/− AMs was severely impaired and was restored by pulmonary GM-CSF expression in vivo or by PU.1 expression in vitro. Defective opsonophagocytosis by GM−/− AMs was associated with decreased FcγR expression. Because interferon-γ (IFN-γ) augments macrophage FcγR levels, the role of GM-CSF/PU.1 in the regulation of AM FcγR expression by IFN-γ was assessed during adenoviral lung infection. Adenoviral infection stimulated IFN-γ production and augmented FcγR levels on AMs in GM-CSF–expressing but not GM−/− mice. However, IFN-γ exposure ex vivo stimulated FcγR expression on GM−/− AMs. Because interleukin-18 (IL-18) and IL-12 stimulate IFN-γ production during adenoviral infection, their role in GM-CSF/PU.1 regulation of IFN-γ–augmented FcγR expression on AMs was assessed. Adenoviral infection stimulated IL-18 and IL-12 production in GM-CSF–expressing mice, but both were markedly reduced or absent in GM−/−mice. IL-18 expression by GM−/− AMs was severely impaired and was restored by pulmonary GM-CSF expression in vivo or by PU.1 expression in vitro. Pulmonary administration of IL-18 in GM−/− mice stimulated IFN-γ production and restored FcγR expression on AMs. These results show that GM-CSF, via PU.1, regulates constitutive AM FcγR expression and opsonophagocytosis and is required for the IFN-γ–dependent regulation of AM FcγR expression, enabling AMs to release IL-18/IL-12 during lung infection.


2002 ◽  
Vol 11 (1) ◽  
pp. 23-31 ◽  
Author(s):  
Vera L. Petricevich

The purpose of this study was to investigate the effects ofTityus serrulatusvenom (TSV) on murine peritoneal macrophages evaluated in terms of activation. The effects of crude TSV were analysed by detection of cytokines, oxygen intermediate metabolites (H2O2) and nitric oxide (NO) in supernatants of peritoneal macrophages. Several functional bioassays were employed including anin vitromodel for envenomating: cytotoxicity of TSV was assessed using the lyses percentage. Tumor necrosis factor (TNF) activity was assayed by measuring its cytotoxic activity on L-929 cells, and interleukin-6 (IL-6) and interferon-γ (IFN-γ) were assayed by enzyme-linked immunosorbent assay, whereas NO levels were detected by Griess colorimetric reactions in culture supernatant of macrophages incubated with TSV and subsequently exposed to either lipopolysaccharide or IFN-γ. Incubation of macrophages with TSV increased production of IL-6 and IFN-γ in a dose-dependent manner. TNF production was not detected in supernatants treated with TSV at any concentration. The increase in IL-6 secretion was not associated with concentration-dependent cytoxicity of TSV on these cells. These data suggest that the cytotoxicity does not appear to be the main cause of an increased cytokine production by these cells. Although NO is an important effector molecule in macrophage microbicidal activity, the inducing potential of the test compounds for its release was found to be very moderate, ranging from 125 to 800 mM. Interestingly, NO levels of peritoneal macrophages were increased after IFN-γ. Moreover, NO production had an apparent effect on macrophage activity. The results obtained here also shown that the TSV induces an important elevation in H2O2release. These results combined with NO production suggest that TSV possesses significant immunomodulatory activities capable of stimulating immune functionsin vitro.


2000 ◽  
Vol 99 (5) ◽  
pp. 421-431 ◽  
Author(s):  
Masayoshi YAMASHIKI ◽  
Akihito MASE ◽  
Ichiro ARAI ◽  
Xian-Xi HUANG ◽  
Tsutomu NOBORI ◽  
...  

Inchinko-to (TJ-135) is a herbal medicine consisting of three kinds of crude drugs, and in Japan it is administered mainly to patients with cholestasis. The present study evaluated the effects of TJ-135 on concanavalin A (con A)-induced hepatitis in mice in vivo and con A-induced cytokine production in vitro. When mice were pretreated with oral TJ-135 for 1 week before intravenous con A injection, the activities of serum aspartate aminotransferase (AST), alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) were significantly decreased 8 h after con A administration (-82%, -96% and -66% respectively). In histological investigations, sub-massive hepatic necrosis accompanying inflammatory cell infiltration was not observed in mice pretreated with TJ-135. Serum levels of interleukin-12 (IL-12), interferon-γ (IFN-γ) and IL-2 were significantly lower in mice pretreated with TJ-135 compared with controls, while IL-10 levels were higher in these mice. Intrasplenic IL-12 levels were significantly lower in mice pretreated with TJ-135, while intrasplenic IL-10 levels were higher in these mice. In vitro, IL-10 production by splenocytes was increased by the addition of TJ-135 to the culture medium, whereas the production of IL-12 and IFN-γ was inhibited. These results suggest that con A-induced hepatitis was ameliorated by pretreatment with TJ-135. With regard to the mechanism of these effects of TJ-135, we speculate that TJ-135 inhibits the production of inflammatory cytokine and enhances the production of anti-inflammatory cytokines. Therefore administration of TJ-135 may be useful in patients with severe acute hepatitis accompanying cholestasis or in those with autoimmune hepatitis.


1998 ◽  
Vol 188 (1) ◽  
pp. 133-143 ◽  
Author(s):  
Chiara Zilocchi ◽  
Antonella Stoppacciaro ◽  
Claudia Chiodoni ◽  
Mariella Parenza ◽  
Nadia Terrazzini ◽  
...  

We analyzed the ability of interferon (IFN)-γ knockout mice (GKO) to reject a colon carcinoma transduced with interleukin (IL)-12 genes (C26/IL-12). Although the absence of IFN-γ impaired the early response and reduced the time to tumor onset in GKO mice, the overall tumor take rate was similar to that of BALB/c mice. In GKO mice, C26/IL-12 tumors had a reduced number of infiltrating leukocytes, especially CD8 and natural killer cells. Analysis of the tumor site, draining nodes, and spleens of GKO mice revealed reduced expression of IFN- inducible protein 10 and monokine induced by γ-IFN. Despite these defects, GKO mice that rejected C26/IL-12 tumor, and mice that were primed in vivo with irradiated C26/IL-12 cells, showed the same cytotoxic T lymphocyte activity but higher production of granulocyte/macrophage colony–stimulating factor (GM-CSF) as compared with control BALB/c mice. Treatment with monoclonal antibodies against GM-CSF abrogated tumor regression in GKO but not in BALB/c mice. CD4 T lymphocytes, which proved unnecessary or suppressive during rejection of C26/IL-12 cells in BALB/c mice, were required for tumor rejection in GKO mice. CD4 T cell depletion was coupled with a decline in GM-CSF expression by lymphocytes infiltrating the tumors or in the draining nodes, and with the reduction and disappearance of granulocytes and CD8 T cells, respectively, in tumor nodules. These results suggest that GM-CSF can substitute for IFN-γ in maintaining the CD8–polymorphonuclear leukocyte cross-talk that is a hallmark of tumor rejection.


Blood ◽  
2003 ◽  
Vol 101 (1) ◽  
pp. 143-150 ◽  
Author(s):  
Yves Delneste ◽  
Peggy Charbonnier ◽  
Nathalie Herbault ◽  
Giovanni Magistrelli ◽  
Gersende Caron ◽  
...  

Abstract Human monocytes differentiate into dendritic cells (DCs) or macrophages according to the nature of environmental signals. Monocytes stimulated with granulocyte-macrophage colony-stimulating factor (GM-CSF) plus interleukin 4 (IL-4) yield DCs. We tested here whether interferon-γ (IFN-γ), a potent activator of macrophages, may modulate monocyte differentiation. Addition of IFN-γ to IL-4 plus GM-CSF–stimulated monocytes switches their differentiation from DCs to CD14−CD64+ macrophages. IFN-γ increases macrophage colony-stimulating factor (M-CSF) and IL-6 production by IL-4 plus GM-CSF–stimulated monocytes by acting at the transcriptional level and acts together with IL-4 to up-regulate M-CSF but not IL-6 production. IFN-γ also increases M-CSF receptor internalization. Results from neutralizing experiments show that both M-CSF and IL-6 are involved in the ability of IFN-γ to skew monocyte differentiation from DCs to macrophages. Finally, this effect of IFN-γ is limited to early stages of differentiation. When added to immature DCs, IFN-γ up-regulates IL-6 but not M-CSF production and does not convert them to macrophages, even in the presence of exogenous M-CSF. In conclusion, IFN-γ shifts monocyte differentiation to macrophages rather than DCs through autocrine M-CSF and IL-6 production. These data show that IFN-γ controls the differentiation of antigen-presenting cells and thereby reveals a new mechanism by which IFN-γ orchestrates the outcome of specific immune responses.


Parasitology ◽  
2015 ◽  
Vol 142 (10) ◽  
pp. 1335-1347 ◽  
Author(s):  
LOURENA EMANUELE COSTA ◽  
MIGUEL ANGEL CHÁVEZ-FUMAGALLI ◽  
VIVIAN TAMIETTI MARTINS ◽  
MARIANA COSTA DUARTE ◽  
DANIELA PAGLIARA LAGE ◽  
...  

SUMMARYTwo mimotopes ofLeishmania infantumidentified by phage display were evaluated as vaccine candidates in BALB/c mice againstLeishmania amazonensisinfection. The epitope-based immunogens, namely B10 and C01, presented as phage-fused peptides; were used without association of a Th1 adjuvant, and they were administered isolated or in combination into animals. Both clones showed a specific production of interferon-gamma (IFN-γ), interleukin-12 (IL-12) and granulocyte/macrophage colony-stimulating factor (GM-CSF) afterin vitrospleen cells stimulation, and they were able to induce a partial protection against infection. Significant reductions of parasite load in the infected footpads, liver, spleen, bone marrow and paws’ draining lymph nodes were observed in the immunized mice, in comparison with the control groups (saline, saponin, wild-type and non-relevant clones). Protection was associated with an IL-12-dependent production of IFN-γ, mediated mainly by CD8+T cells, against parasite proteins. Protected mice also presented low levels of IL-4 and IL-10, as well as increased levels of parasite-specific IgG2a antibodies. The association of both clones resulted in an improved protection in relation to their individual use. More importantly, the absence of adjuvant did not diminish the cross-protective efficacy againstLeishmaniaspp. infection. This study describes for the first time two epitope-based immunogens selected by phage display technology againstL. infantuminfected dogs sera, which induced a partial protection in BALB/c mice infected withL. amazonensis.


Blood ◽  
2000 ◽  
Vol 96 (4) ◽  
pp. 1230-1238 ◽  
Author(s):  
Tan Jinquan ◽  
Sha Quan ◽  
Henrik H. Jacobi ◽  
Chen Jing ◽  
Anders Millner ◽  
...  

Abstract CXC chemokine receptor 3 (CXCR3), which is known to be expressed predominately on memory and activated T lymphocytes, is a receptor for both interferon γ (IFN-γ)–inducible protein 10 (γIP-10) and monokine induced by IFN-γ (Mig). We report the novel finding that CXCR3 is also expressed on CD34+ hematopoietic progenitors from human cord blood stimulated with granulocyte-macrophage colony-stimulating factor (GM-CSF) but not on freshly isolated CD34+ progenitors. Freshly isolated CD34+progenitors expressed low levels of CXCR3 messenger RNA, but this expression was highly up-regulated by GM-CSF, as indicated by a real-time quantitative reverse transcriptase–polymerase chain reaction technique. γIP-10 and Mig induced chemotaxis of GM-CSF–stimulated CD34+ progenitors by means of CXCR3, since an anti-CXCR3 monoclonal antibody (mAb) was found to block γIP-10–induced and Mig-induced CD34+ progenitor chemotaxis. These chemotactic attracted CD34+ progenitors are colony-forming units—granulocyte-macrophage. γIP-10 and Mig also induced GM-CSF–stimulated CD34+ progenitor adhesion and aggregation by means of CXCR3, a finding confirmed by the observation that anti-CXCR3 mAb blocked these functions of γIP-10 and Mig but not of chemokine stromal cell–derived factor 1α. γIP-10–induced and Mig-induced up-regulation of integrins (CD49a and CD49b) was found to play a crucial role in adhesion of GM-CSF–stimulated CD34+progenitors. Moreover, γIP-10 and Mig stimulated CXCR3 redistribution and cellular polarization in GM-CSF–stimulated CD34+progenitors. These results indicate that CXCR3–γIP-10 and CXCR3–Mig receptor-ligand pairs, as well as the effects of GM-CSF on them, may be especially important in the cytokine/chemokine environment for the physiologic and pathophysiologic events of differentiation of CD34+ hematopoietic progenitors into lymphoid and myeloid stem cells, subsequently immune and inflammatory cells. These processes include transmigration, relocation, differentiation, and maturation of CD34+ hematopoietic progenitors.


2020 ◽  
Vol 5 (52) ◽  
pp. eaba9953
Author(s):  
Javad Rasouli ◽  
Giacomo Casella ◽  
Satoshi Yoshimura ◽  
Weifeng Zhang ◽  
Dan Xiao ◽  
...  

Elevation of granulocyte-macrophage colony-stimulating factor (GM-CSF)–producing T helper (TH) cells has been associated with several autoimmune diseases, suggesting a potential role in the pathogenesis of autoimmunity. However, the identity of GM-CSF–producing TH cells has not been closely examined. Using single-cell RNA sequencing and high-dimensional single-cell mass cytometry, we identified eight populations of antigen-experienced CD45RA−CD4+ T cells in blood of healthy individuals including a population of GM-CSF–producing cells, known as THGM, that lacked expression of signature transcription factors and cytokines of established TH lineages. Using GM-CSF-reporter/fate reporter mice, we show that THGM cells are present in the periphery and central nervous system in a mouse model of experimental autoimmune encephalomyelitis. In addition to GM-CSF, human and mouse THGM cells also expressed IL-2, tumor necrosis factor (TNF), IL-3, and CCL20. THGM cells maintained their phenotype through several cycles of activation but up-regulated expression of T-bet and interferon-γ (IFN-γ) upon exposure to IL-12 in vitro and in the central nervous system of mice with autoimmune neuroinflammation. Although T-bet was not required for the development of THGM cells, it was essential for their encephalitogenicity. These findings demonstrate that THGM cells constitute a distinct population of TH cells with lineage characteristics that are poised to adopt a TH1 phenotype and promote neuroinflammation.


Sign in / Sign up

Export Citation Format

Share Document