The receptor tyrosine kinase c-kit provides a critical signal for survival, expansion, and maturation of mouse natural killer cells

Blood ◽  
2000 ◽  
Vol 95 (3) ◽  
pp. 984-991 ◽  
Author(s):  
Francesco Colucci ◽  
James P. Di Santo

Fetal liver kinase ligands (flk2L/flt3L) and stem cell factor (SCF) have been shown to promote natural killer (NK) cell differentiation from hematopoietic stem cell (HSC) precursors in vitro. However, the contribution of signaling through the receptors for these growth factors for in vivo NK cell development remains ill-defined. We have analyzed the role of the SCF receptor c-kit in NK cell differentiation by reconstituting NK-deficient mice with fetal liver (FL) HSCs of c-kit−/− (W/W) mice. Although c-kit−/−NK cells were generated inW/W chimeras, they were reduced in number, contained a lower percentage of CD45R (B220)+ cells, and were poorly cytolytic. In vitro experiments showed that generation of NK cells from FL precursors was reduced in the absence of c-kit signaling and that SCF promoted the survival of peripheral c-kit+ NK cells. We conclude that c-kit/SCF interactions in vivo are dispensable for the commitment of HSC to the NK lineage, but they provide essential signals for generating normal numbers of fully mature NK cells.

Blood ◽  
2011 ◽  
Vol 117 (17) ◽  
pp. 4511-4518 ◽  
Author(s):  
Katrina Soderquest ◽  
Nick Powell ◽  
Carmelo Luci ◽  
Nico van Rooijen ◽  
Andrés Hidalgo ◽  
...  

Abstract Natural killer (NK) cells play a major role in immunologic surveillance of cancer. Whether NK-cell subsets have specific roles during antitumor responses and what the signals are that drive their terminal maturation remain unclear. Using an in vivo model of tumor immunity, we show here that CD11bhiCD27low NK cells migrate to the tumor site to reject major histocompatibility complex class I negative tumors, a response that is severely impaired in Txb21−/− mice. The phenotypical analysis of Txb21-deficient mice shows that, in the absence of Txb21, NK-cell differentiation is arrested specifically at the CD11bhiCD27hi stage, resulting in the complete absence of terminally differentiated CD11bhiCD27low NK cells. Adoptive transfer experiments and radiation bone marrow chimera reveal that a Txb21+/+ environment rescues the CD11bhiCD27hi to CD11bhiCD27low transition of Txb21−/− NK cells. Furthermore, in vivo depletion of myeloid cells and in vitro coculture experiments demonstrate that spleen monocytes mediate the terminal differentiation of peripheral NK cells in a Txb21- and IL-15Rα–dependent manner. Together, these data reveal a novel, unrecognized role for Txb21 expression in monocytes in promoting NK-cell development and help appreciate how various NK-cell subsets are generated and participate in antitumor immunity.


2001 ◽  
Vol 193 (12) ◽  
pp. 1413-1424 ◽  
Author(s):  
Francesco Colucci ◽  
Eleftheria Rosmaraki ◽  
Søren Bregenholt ◽  
Sandrine I. Samson ◽  
Vincenzo Di Bartolo ◽  
...  

The product of the protooncogene Vav1 participates in multiple signaling pathways and is a critical regulator of antigen–receptor signaling in B and T lymphocytes, but its role during in vivo natural killer (NK) cell differentiation is not known. Here we have studied NK cell development in Vav1−/− mice and found that, in contrast to T and NK-T cells, the absolute numbers of phenotypically mature NK cells were not reduced. Vav1−/− mice produced normal amounts of interferon (IFN)-γ in response to Listeria monocytogenes and controlled early infection but showed reduced tumor clearance in vivo. In vitro stimulation of surface receptors in Vav1−/− NK cells resulted in normal IFN-γ production but reduced tumor cell lysis. Vav1 was found to control activation of extracellular signal-regulated kinases and exocytosis of cytotoxic granules. In contrast, conjugate formation appeared to be only mildly affected, and calcium mobilization was normal in Vav1−/− NK cells. These results highlight fundamental differences between proximal signaling events in T and NK cells and suggest a functional dichotomy for Vav1 in NK cells: a role in cytotoxicity but not for IFN-γ production.


1996 ◽  
Vol 184 (5) ◽  
pp. 1845-1856 ◽  
Author(s):  
I M Bennett ◽  
O Zatsepina ◽  
L Zamai ◽  
L Azzoni ◽  
T Mikheeva ◽  
...  

Human natural killer (NK) cell differentiation from immature lineage negative (Lin-) umbilical cord blood cells was examined in vitro. Cells expressing differentiation antigens of mature NK cells (CD56, CD16, CD2, CD8, NKR-P1A) were generated from Lin- cells cultured with interleukin (IL)-2 and a murine bone marrow stromal cell line expressing the human membrane-bound form of stem cell factor. Two subsets of NK cells were identified in these cultures: one expressed both NKR-P1A and CD56 and, in variable proportions, all other NK cell differentiation antigens; the second subset expressed only NKR-P1A and, unlike the former, was not cytotoxic. Neither subset expressed interferon (IFN)-gamma mRNA even after stimulation with phorbol di-ester and Ca2+ ionophore, but both expressed tumor necrosis factor alpha mRNA and the cytotoxic granule-associated proteins TIA-1, perforin, and serine esterase-1. After 10-d culture with IL-2, IL-12, and irradiated B lymphoblastoid cells, approximately 45% of the NKR-P1A+/ CD56- cells became CD56+, and the same cultures contained cells capable of cytotoxicity and of IFN-gamma production. These results indicate that NKR-P1A expression in the absence of other NK cell markers defines an intermediate, functionally immature stage of NK cell differentiation, and that effector functions develop in these cells, concomitantly with CD56 expression, in the presence of IL-12. These cells likely represent the counterpart of a CD3-/NKR-P1A+/ CD56-/CD16- cell subset that, as shown here, is present both in adult and neonatal circulating lymphocytes.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 17-17 ◽  
Author(s):  
Ryan P Sullivan ◽  
Jeffrey W Leong ◽  
Stephanie E Schneider ◽  
Rizwan Romee ◽  
Veronika Sexl ◽  
...  

Abstract Introduction Natural Killer (NK) cells are lymphocytes that are important for early host defense against infectious pathogens and malignant transformation. NK cells differentiate from the CLP in the bone marrow, where they are identified by markers such as CD56 and NKp46 in humans, and NK1.1, CD122, and NKp46 in mice. NK cells further mature in the periphery, and this maturation is essential for NK cell function, as both NK cell cytotoxicity and IFN-g production are dependent upon maturation. NK cell maturation is distinguished by surface marker transitions, including CD56bright to CD56dim in humans, and loss of CD27 expression in mice. However, the factors controlling NK cell differentiation and maturation are incompletely understood. We hypothesized that the transcription factor Myb had a role in this process, due to its high expression in immature NK cells and subsequent loss upon maturation. miRNAs are a family of small RNA molecules that control a wide variety of cellular processes via binding to target sites in the 3'UTR of messenger RNAs and downregulate protein production. The miR-15/16 family is very highly expressed in NK cells, and directly targets the 3'UTR of Myb. We hypothesized that a miR-15a/16-1KO mouse would have NK cell-intrinsic alterations in Myb levels, and would serve as a model of Myb upregulation. Here, we use lentiviral overexpression in primary human and mouse NK cells, as well as an in vitro human NK cell differentiation system, to demonstrate that Myb has critical roles in the NK cell differentiation and maturation processes. Furthermore, we generate a novel mouse model of miR-15/16 deficiency, and show that miR-15/16 is critically important for the regulation of Myb levels, and disruption of miR-15/16 prevents appropriate NK cell maturation. Results and Conclusions In order to investigate the role of Myb in NK cells, we transduced human NK cells, and cultured them in vitro. After 5 days of culture, GFP+ NK cells overexpressing Myb remained CD56bright (84±3 v. 6±2%, p<0.01), whereas NK cells expressing GFP only had differentiated to CD56dim (16±2 v. 94±3%, p<0.001). Mouse CD27+ NK cells were transduced with the same viruses, and adoptively transferred and allowed to mature for 7 days in their new hosts. 0% of NK cells overexpressing Myb matured to CD27-, while 11% of GFP only matured, and 22% of NK cells with knockdown of Myb matured to CD27-. Thus, cells overexpressing Myb have a block in maturation, and Myb downregulation is essential for complete NK cell maturation. To further investigate the role of Myb, we lentivirally transduced and cultured CD34+ progenitors in NK cell differentiation conditions. We found that cells overexpressing Myb had an increased percentage of immature CD56bright NK cells, which arose with more rapid kinetics (91±8 v. 28±16%, p<0.001 at day 14) [Fig. 1]. However, at later time points, cells overexpressing Myb failed to differentiate from CD56bright to the more mature CD56dim NK cells (8±6 v. 64±11%, p<0.01 at day 21). In contrast, CD34 cells transduced with an shRNA directed against Myb, differentiated to CD56dim NK cells more rapidly than control cells (90±7 v. 65±11, p<0.05 at day 21). Therefore, Myb drives initial NK cell differentiation, but prevents final maturation of NK cells. We found that Myb is a direct target of miR-15/16, as overexpression of miR-15/16 reduces the signal of luciferase fused to the 3'UTR of Myb by 50% (p<0.001), while a sponge directed against miR-15/16 increases signal by 40% (p<0.001). Therefore, we generated a novel mouse model of NK cell-specific miR-15a/16-1 knockout driven by NKp46 (Ncr1), and confirmed that Myb expression was increased in miR-15a/16-1KO NK cells (9-fold in CD27+ NK cells, p<0.05). No early differentiation phenotype was observed, because Cre is expressed later, after NK cell lineage determination. In contrast, these mice lacked mature NK cells (31±4 v 62±6 %CD27- of splenic NK, p<0.01, Fig. 2). Additionally, miR-15a/16-1 overexpression in human CD34+ cells recapitulates the phenotype of Myb knockdown, establishing a direct link between miR-15/16 and Myb [Fig. 1]. Therefore, miR-15/16 controls Myb expression in a cell-intrinsic manner, and thereby directs NK cell differentiation and maturation. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2001 ◽  
Vol 97 (9) ◽  
pp. 2625-2632 ◽  
Author(s):  
Francesco Colucci ◽  
Sandrine I. Samson ◽  
Rodney P. DeKoter ◽  
Olivier Lantz ◽  
Harinder Singh ◽  
...  

Abstract PU.1 is a member of the Ets family of transcription factors required for the development of various lymphoid and myeloid cell lineages, but its role in natural killer (NK) cell development is not known. The study shows that PU.1 is expressed in NK cells and that, on cell transfer into alymphoid Rag2/γc−/−mice, hematopoietic progenitors of PU.1−/−fetal liver cells could generate functional NK cells but not B or T cells. Nevertheless, the numbers of bone marrow NK cell precursors and splenic mature NK cells were reduced compared to controls. Moreover,PU.1−/− NK cells displayed reduced expression of the receptors for stem cell factor and interleukin (IL)-7, suggesting a nonredundant role for PU.1 in regulating the expression of these cytokine receptor genes during NK cell development.PU.1−/− NK cells also showed defective expression of inhibitory and activating members of the Ly49 family and failed to proliferate in response to IL-2 and IL-12. Thus, despite the less stringent requirement for PU.1 in NK cell development compared to B and T cells, PU.1 regulates NK cell differentiation and homeostasis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Giorgio Santoni ◽  
Consuelo Amantini ◽  
Matteo Santoni ◽  
Federica Maggi ◽  
Maria Beatrice Morelli ◽  
...  

Natural killer (NK) cells are a main subset of innate lymphocytes that contribute to host immune protection against viruses and tumors by mediating target cell killing and secreting a wide array of cytokines. Their functions are finely regulated by a balance between activating and inhibitory receptors and involve also adhesive interactions. Mechanotransduction is the process in which physical forces sensed by mechanosensors are translated into chemical signaling. Herein, we report findings on the involvement of this mechanism that is mainly mediated by actin cytoskeleton, in the regulation of NK cell adhesion, migration, tissue infiltration and functions. Actin represents the structural basis for NK cell immunological synapse (NKIS) and polarization of secretory apparatus. NK-target cell interaction involves the formation of both uropods and membrane nanotubes that allow target cell interaction over long distances. Actin retrograde flow (ARF) regulates NK cell signaling and controls the equilibrium between activation versus inhibition. Activating NKIS is associated with rapid lamellipodial ARF, whereas lower centripetal actin flow is present during inhibitory NKIS where β actin can associate with the tyrosine phosphatase SHP-1. Overall, a better knowledge of mechanotransduction might represent a future challenge: Realization of nanomaterials tailored for NK cells, would be important to translate in vitro studies in in vivo new immunotherapeutic approaches.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii194-ii195
Author(s):  
Nazanin Majd ◽  
Maha Rizk ◽  
Solveig Ericson ◽  
Kris Grzegorzewski ◽  
Sharmila Koppisetti ◽  
...  

Abstract Glioblastoma (GBM) is the most aggressive primary brain tumor with dismal prognosis. Recent advances of immunotherapy in cancer have sparked interest in the use of cell therapy for treatment of GBM. Active transfer of Natural Killer (NK) cells is of particular interest in GBM because NK cells are capable of exerting anti-tumor cytotoxicity without the need for antigen presentation and sensitization, processes that are impaired in GBM. CYNK-001 is an allogeneic, off-the-shelf product enriched for CD56+/CD3- NK cells expanded from placental CD34+ cells manufactured by Celularity. Here, we demonstrate in vitro cytotoxicity of CYNK-001 against several GBM lines and its in vivo anti-tumor activity in a U87MG orthotopic mouse model via intracranial administration resulting in 94.5% maximum reduction in tumor volume. We have developed a phase I window-of-opportunity trial of CYNK-001 in recurrent GBM via intravenous (IV) and intratumoral (IT) routes. In the IV cohort, subjects receive cyclophosphamide for lymphodepletion followed by 3-doses of IV CYNK-001 weekly. In the IT cohort, subjects undergo placement of an IT catheter with an ommaya reservoir followed by 3-doses of IT CYNK-001 weekly. Patients are monitored for 28-days after last infusion for toxicity. Once maximum safe dose (MSD) is determined, patients undergo IV or IT treatments at MSD followed by surgical resection and the tumor tissue will be analyzed for NK cell engraftment and persistence. We will utilize a 3 + 3 dose de-escalation design (maximum n=36). Primary endpoint is safety and feasibility. Secondary endpoints are overall response rate, duration of response, time to progression, progression free survival and overall survival. Main eligibility criteria include age ≥18, KPS ≥60, GBM at first or second relapse with a measurable lesion on ≤2mg dexamethasone. This is the first clinical trial to investigate CYNK-001 in GBM and will lay the foundation for future NK cell therapy in solid tumors.


2006 ◽  
Vol 203 (4) ◽  
pp. 1033-1043 ◽  
Author(s):  
Aharon G. Freud ◽  
Akihiko Yokohama ◽  
Brian Becknell ◽  
Melissa T. Lee ◽  
Hsiaoyin C. Mao ◽  
...  

Human natural killer (NK) cells originate from CD34(+) hematopoietic progenitor cells, but the discrete stages of NK cell differentiation in vivo have not been elucidated. We identify and functionally characterize, from human lymph nodes and tonsils, four NK cell developmental intermediates spanning the continuum of differentiation from a CD34(+) NK cell progenitor to a functionally mature NK cell. Analyses of each intermediate stage for CD34, CD117, and CD94 cell surface expression, lineage differentiation potentials, capacity for cytokine production and natural cytotoxicity, and ETS-1, GATA-3, and T-BET expression provide evidence for a new model of human NK cell differentiation in secondary lymphoid tissues.


Blood ◽  
2006 ◽  
Vol 108 (12) ◽  
pp. 3824-3833 ◽  
Author(s):  
Bartosz Grzywacz ◽  
Nandini Kataria ◽  
Magdalena Sikora ◽  
Robert A. Oostendorp ◽  
Elaine A. Dzierzak ◽  
...  

AbstractThe stages of human natural killer (NK) cell differentiation are not well established. Culturing CD34+ progenitors with interleukin 7 (IL-7), IL-15, stem cell factor (SCF), FLT-3L, and murine fetal liver cell line (EL08.1D2), we identified 2 nonoverlapping subsets of differentiating CD56+ cells based on CD117 and CD94 (CD117highCD94– and CD117low/–CD94+ cells). Both populations expressed CD161 and NKp44, but differed with respect to NKp30, NKp46, NKG2A, NKG2C, NKG2D, CD8, CD16, and KIR. Only the CD117low/– CD94+ population displayed cytotoxicity and interferon-γ production. Both populations arose from a single CD34+CD38– Lin– cell and their percentages changed over time in a reciprocal fashion, with CD117highCD94– cells predominating early and decreasing due to an increase of the CD117low/–CD94+ population. These 2 subsets represent distinct stages of NKcell differentiation, since purified CD117high CD94– cells give rise to CD117low/–CD94+ cells. The stromal cell line (EL08.1D2) facilitated the transition from CD117highCD94– to CD117low/–CD94+ via an intermediate phenotype (CD117lowCD94low/–). EL08.1D2 also maintained the mature phenotype, preventing the reversion of CD117low/–CD94+ cells to the intermediate (CD117lowCD94low/–) phenotype. An analogous population of CD56+CD117highCD94– cells was found in cord blood. The identified stages of NK-cell differentiation provide evidence for coordinated acquisition of HLA-specific inhibitory receptors (ie, CD94/NKG2A) and function in developing human NK cells.


Blood ◽  
1984 ◽  
Vol 63 (2) ◽  
pp. 260-269 ◽  
Author(s):  
KF Mangan ◽  
ME Hartnett ◽  
SA Matis ◽  
A Winkelstein ◽  
T Abo

Abstract To determine the role of natural killer (NK) cells in the regulation of human erythropoiesis, we studied the effects of NK-enriched cell populations on the in vitro proliferation of erythroid stem cells at three different levels of maturation (day 14 blood BFU-E, day 5–6 marrow CFU-E, and day 10–12 marrow BFU-E). NK cells were enriched from blood by Percoll density gradient centrifugation and by fluorescence- activated cell sorting (FACS), using the human natural killer cell monoclonal antibody, HNK-1. The isolated enriched fractions were cocultured with autologous nonadherent marrow cells or blood null cells and erythropoietin in a methylcellulose erythroid culture system. Cells from low-density Percoll fractions (NK-enriched cells) were predominantly large granular lymphocytes with cytotoxic activity against K562 targets 6–10-fold greater than cells obtained from high- density Percoll fractions (NK-depleted cells). In coculture with marrow nonadherent cells (NA) at NK:NA ratios of 2:1, NK-enriched cells suppressed day 5–6 CFU-E to 62% (p less than 0.025) of controls, whereas NK-depleted cells slightly augmented CFU-E to 130% of controls (p greater than 0.05). In contrast, no suppression of day 10–12 marrow BFU-E was observed employing NK-enriched cells. The NK CFU-E suppressor effects were abolished by complement-mediated lysis of NK-enriched cells with the natural killer cell antibody, HNK-1. Highly purified HNK- 1+ cells separated by FACS suppressed marrow CFU-E to 34% (p less than 0.025) and marrow BFU-E to 41% (p less than 0.025) of controls. HNK- cells had no significant effect on either BFU-E or CFU-E growth. NK- enriched cells were poor stimulators of day 14 blood BFU-E in comparison to equal numbers of NK-depleted cells or T cells isolated by E-rosetting (p less than 0.01). Interferon boosting of NK-enriched cells abolished their suboptimal burst-promoting effects and augmented their CFU-E suppressor effects. These studies provide evidence for a potential regulatory role of NK cells in erythropoiesis. The NK suppressor effect is maximal at the level of the mature erythroid stem cell CFU-E. These findings may explain some hypoproliferative anemias that develop in certain NK cell-activated states.


Sign in / Sign up

Export Citation Format

Share Document