orthotopic mouse model
Recently Published Documents


TOTAL DOCUMENTS

297
(FIVE YEARS 97)

H-INDEX

28
(FIVE YEARS 5)

Cells ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 97
Author(s):  
Stella C. Ogbu ◽  
Samuel Rojas ◽  
John Weaver ◽  
Phillip R. Musich ◽  
Jinyu Zhang ◽  
...  

Breast cancer, as the most prevalent cancer in women, is responsible for more than 15% of new cancer cases and about 6.9% of all cancer-related death in the US. A major cause of therapeutic failure in breast cancer is the development of resistance to chemotherapy, especially for triple-negative breast cancer (TNBC). Therefore, how to overcome chemoresistance is the major challenge to improve the life expectancy of breast cancer patients. Our studies demonstrate that TNBC cells surviving the chronic treatment of chemotherapeutic drugs show significantly higher expression of the dual serine/threonine and tyrosine protein kinase (DSTYK) than non-treated parental cells. In our in vitro cellular models, DSTYK knockout via the CRISPR/Cas9-mediated technique results in apoptotic cell death of chemoresistant cells upon drug treatment. Moreover, DSTYK knockout promotes chemotherapeutic drug-induced tumor cell death in an orthotopic mouse model. These findings suggest that DSTYK exerts an important and previously unknown role in promoting chemoresistance. Our studies provide fundamental insight into the role of DSTYK in chemoresistance in TNBC cells and lay the foundation for the development of new strategies targeting DSTYK for improving TNBC therapy.


Antioxidants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1988
Author(s):  
Susanne Flor ◽  
Claudia R. Oliva ◽  
Md Yousuf Ali ◽  
Kristen L. Coleman ◽  
Jeremy D. Greenlee ◽  
...  

Glioblastoma remains the deadliest form of brain cancer, largely because these tumors become resistant to standard of care treatment with radiation and chemotherapy. Intracellular production of reactive oxygen species (ROS) is necessary for chemo- and radiotherapy-induced cytotoxicity. Here, we assessed whether antioxidant catalase (CAT) affects glioma cell sensitivity to temozolomide and radiation. Using The Cancer Genome Atlas database, we found that CAT mRNA expression is upregulated in glioma tumor tissue compared with non-tumor tissue, and the level of expression negatively correlates with the overall survival of patients with high-grade glioma. In U251 glioma cells, CAT overexpression substantially decreased the basal level of hydrogen peroxide, enhanced anchorage-independent cell growth, and facilitated resistance to the chemotherapeutic drug temozolomide and ionizing radiation. Importantly, pharmacological inhibition of CAT activity reduced the proliferation of glioma cells isolated from patient biopsy samples. Moreover, U251 cells overexpressing CAT formed neurospheres in neurobasal medium, whereas control cells did not, suggesting that the radio- and chemoresistance conferred by CAT may be due in part to the enrichment of glioma stem cell populations. Finally, CAT overexpression significantly decreased survival in an orthotopic mouse model of glioma. These results demonstrate that CAT regulates chemo- and radioresistance in human glioma.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ming Ji ◽  
Zhihui Zhang ◽  
Songwen Lin ◽  
Chunyang Wang ◽  
Jing Jin ◽  
...  

Glioblastoma multiforme (GBM) is the most common malignant tumor of the central nervous system. Temozolomide (TMZ)–based adjuvant treatment has improved overall survival, but clinical outcomes remain poor; TMZ resistance is one of the main reasons for this. Here, we report a new phosphatidylinositide 3-kinase inhibitor, XH30; this study aimed to assess the antitumor activity of this compound against TMZ-resistant GBM. XH30 inhibited cell proliferation in TMZ-resistant GBM cells (U251/TMZ and T98G) and induced cell cycle arrest in the G1 phase. In an orthotopic mouse model, XH30 suppressed TMZ-resistant tumor growth. XH30 was also shown to enhance TMZ cytotoxicity both in vitro and in vivo. Mechanistically, the synergistic effect of XH30 may be attributed to its repression of the key transcription factor GLI1 via the noncanonical hedgehog signaling pathway. XH30 reversed sonic hedgehog–triggered GLI1 activation and decreased GLI1 activation by insulin-like growth factor 1 via the noncanonical hedgehog signaling pathway. These results indicate that XH30 may represent a novel therapeutic option for TMZ-resistant GBM.


Cancers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 5820
Author(s):  
Marina Simón ◽  
Jesper Tranekjær Jørgensen ◽  
Fredrik Melander ◽  
Thomas Lars Andresen ◽  
Anders Christensen ◽  
...  

Surgery is still the first-line treatment for multiple solid cancers. However, recurrence is a common issue, especially when dealing with aggressive tumors or tumors that are difficult to completely remove due to their location. Getting clear surgical margins can be challenging, but treatment strategies combining surgery with other anti-cancer therapies can potentially improve the outcome. Photothermal therapy (PTT) is a technique that relies on photoabsorbing agents, such as gold nanoparticles, to transform light into local hyperthermia. This technique can be used to ablate tumor tissue where the photoabsorbing agent accumulates, sparing healthy surrounding tissue. In this study, we examined the potential of gold nanoparticle-based PTT as an adjuvant treatment to surgery in a mouse model of human fibrosarcoma. For this we performed subtotal tumor resection to mimic a clinical situation where total tumor removal is not achieved, and subsequent PTT was applied on the surgical field. Our results showed that animals undergoing adjuvant PTT after surgery presented sustained delayed tumor growth and improved survival when compared to animals that only underwent surgery. We believe that these findings show the potential of PTT as an adjuvant method to traditional tumor surgery and could pave way to more personalized treatment options.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Mitchell Clark ◽  
Alexandra Kollara ◽  
Theodore J. Brown ◽  
Taymaa May

Abstract Background Investigate the impact of interval cytoreductive surgery (ICS) on progression in an orthotopic mouse model of ovarian cancer and the impact of chemotherapy delivered at various timelines following surgery. Methods Luciferase-expressing ID8 murine ovarian cancer cells were implanted intra-bursally and IP to C57BL/7 mice. Once disease was established by bioluminescence, 2 cycles of neoadjuvant cisplatin were administered, and animals received either ICS (removal of the injected bursa/primary tumor) or anesthesia alone. Postsurgical chemotherapy was administered on the same day as the intervention (ICS/anesthesia), or on day 7 or day 28 following the intervention. Progression was quantified serially with in vivo bioluminescence imaging. Volume of ascitic fluid volume collected at necropsy was measured. Results Animals were matched for tumor burden at stratification. There was no accelerated growth of residual tumor after interval cytoreduction compared to controls. Animals who received chemotherapy on postoperative day (POD) 7 had better disease control compared to standard-of-care POD 28. Animals who underwent surgery had less ascites at necropsy compared to those who had anesthesia alone. Conclusions In this animal model, surgical wounding with suboptimal cytoreduction after neoadjuvant chemotherapy did not cause accelerated expansion of residual disease. Surgical wounding appears to impair cisplatin activity when given at time of surgery.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi209-vi209
Author(s):  
Bhavyata Pandya ◽  
Becky Slagle Webb ◽  
Brad Zacharia ◽  
Justin Lathia ◽  
Joshua Rubin ◽  
...  

Abstract Sexual dimorphism in incidence and the clinical outcomes of Glioblastoma (GBM) has been reported, however, our knowledge of contributing biological mechanisms is limited. Iron acquisition is key to robust tumor growth. Upregulation of Transferrin (TF, iron transport protein)/Transferrin receptor (TFR) is critical for found in multiple different cancers, specifically, we have identified H-ferritin (FTH1) as a contributor to iron transport and protection in cancer stem cells. To interrogate brain tumor iron uptake mechanisms,we performed binding studies on homogenized samples of human male and female GBM tissue samples using 125I labeled TF and FTH1. Tumors from males had a ̴ 3.8-fold increased binding of both proteins compared to tumors from females. We interrogated iron uptake in a syngeneic orthotopic mouse model (GL261 cells) using male and female mice. After the tumors were established, radioactive 125I labeled TF and FTH1 proteins were injected retro-orbitally in the mice. After 24 hours, tumors wereremoved, and analyzed for TF and FTH1 uptake. Male tumors showed an increased uptake, of ̴ 3.2-fold, as compared to female tumors. There was no significant difference in TF uptake between male and female tumors nor between tumor and matched non-tumor brain tissue. We next queried role of FTH1 in the context of sexual dimorphism in GBM in a FTH1+/- mouse strain developed in our laboratory. Survival was monitored in the mice which were injected with GL261 cells at 3 months. Male mice that had reduced expression of FTH1 had poorer survival as compared to the male wild type controls whereas wild type and FTH+/- females had no major differences in survival outcomes. In summary, this study demonstrates sexual dimorphism in iron acquisition in GBM and animal models further suggesting a pathophysiological role of iron metabolism in GBM development and its possible role in prognosis.


Author(s):  
Huan Zhang ◽  
Weimin Xie ◽  
Yuning Zhang ◽  
Xiwen Dong ◽  
Chao Liu ◽  
...  

AbstractEffective therapeutic strategies for triple-negative breast cancer (TNBC) are still lacking. Clinical data suggest that a large number of TNBC patients cannot benefit from single immune checkpoint inhibitor (ICI) treatment due to the immunosuppressive tumour microenvironment (TME). Therefore, combination immunotherapy is an alternative approach to overcome this limitation. In this article, we combined two kinds of oncolytic adenoviruses with ICIs to treat TNBC in an orthotopic mouse model. Histopathological analysis and immunohistochemistry as well as multiplex immunofluorescence were used to analyse the TME. The immunophenotype of the peripheral blood and spleen was detected by using flow cytometry. Oncolytic adenovirus-mediated immune activity in a coculture system of lytic supernatant and splenocytes supported the study of the mechanism of combination therapy in vitro. Our results showed that the combination of oncolytic adenoviruses with anti-programmed cell death-ligand 1 (anti-PD-L1) and anti-cytotoxic T lymphocyte-associated antigen-4 (anti-CTLA-4) (aPC) can significantly inhibit tumour growth and prolong survival in a TNBC model. The combination therapy synergistically enhanced the antitumour effect by recruiting CD8+ T and T memory cells, reducing the number of regulatory T cells and tumour-associated macrophages, and promoting the polarization of macrophages from the M2 to the M1 phenotype to regulate the TME. The rAd.GM regimen performed better than the rAd.Null treatment. Furthermore, aPC efficiently blocked oncolytic virus-induced upregulation of PD-L1 and CTLA-4. These findings indicate that oncolytic adenoviruses can reprogramme the immunosuppressive TME, while ICIs can prevent immune escape after oncolytic virus therapy by reducing the expression of immune checkpoint molecules. Our results provide a mutually reinforcing strategy for clinical combination immunotherapy.


Sign in / Sign up

Export Citation Format

Share Document