scholarly journals Evidence for discrete stages of human natural killer cell differentiation in vivo

2006 ◽  
Vol 203 (4) ◽  
pp. 1033-1043 ◽  
Author(s):  
Aharon G. Freud ◽  
Akihiko Yokohama ◽  
Brian Becknell ◽  
Melissa T. Lee ◽  
Hsiaoyin C. Mao ◽  
...  

Human natural killer (NK) cells originate from CD34(+) hematopoietic progenitor cells, but the discrete stages of NK cell differentiation in vivo have not been elucidated. We identify and functionally characterize, from human lymph nodes and tonsils, four NK cell developmental intermediates spanning the continuum of differentiation from a CD34(+) NK cell progenitor to a functionally mature NK cell. Analyses of each intermediate stage for CD34, CD117, and CD94 cell surface expression, lineage differentiation potentials, capacity for cytokine production and natural cytotoxicity, and ETS-1, GATA-3, and T-BET expression provide evidence for a new model of human NK cell differentiation in secondary lymphoid tissues.

Blood ◽  
2011 ◽  
Vol 117 (17) ◽  
pp. 4511-4518 ◽  
Author(s):  
Katrina Soderquest ◽  
Nick Powell ◽  
Carmelo Luci ◽  
Nico van Rooijen ◽  
Andrés Hidalgo ◽  
...  

Abstract Natural killer (NK) cells play a major role in immunologic surveillance of cancer. Whether NK-cell subsets have specific roles during antitumor responses and what the signals are that drive their terminal maturation remain unclear. Using an in vivo model of tumor immunity, we show here that CD11bhiCD27low NK cells migrate to the tumor site to reject major histocompatibility complex class I negative tumors, a response that is severely impaired in Txb21−/− mice. The phenotypical analysis of Txb21-deficient mice shows that, in the absence of Txb21, NK-cell differentiation is arrested specifically at the CD11bhiCD27hi stage, resulting in the complete absence of terminally differentiated CD11bhiCD27low NK cells. Adoptive transfer experiments and radiation bone marrow chimera reveal that a Txb21+/+ environment rescues the CD11bhiCD27hi to CD11bhiCD27low transition of Txb21−/− NK cells. Furthermore, in vivo depletion of myeloid cells and in vitro coculture experiments demonstrate that spleen monocytes mediate the terminal differentiation of peripheral NK cells in a Txb21- and IL-15Rα–dependent manner. Together, these data reveal a novel, unrecognized role for Txb21 expression in monocytes in promoting NK-cell development and help appreciate how various NK-cell subsets are generated and participate in antitumor immunity.


2003 ◽  
Vol 197 (10) ◽  
pp. 1245-1253 ◽  
Author(s):  
Melissa Lodoen ◽  
Kouetsu Ogasawara ◽  
Jessica A. Hamerman ◽  
Hisashi Arase ◽  
Jeffrey P. Houchins ◽  
...  

Natural killer (NK) cells play a critical role in the innate immune response against cytomegalovirus (CMV) infections. Although CMV encodes several gene products committed to evasion of adaptive immunity, viral modulation of NK cell activity is only beginning to be appreciated. A previous study demonstrated that the mouse CMV m152-encoded gp40 glycoprotein diminished expression of ligands for the activating NK cell receptor NKG2D on the surface of virus-infected cells. Here we have defined the precise ligands that are affected and have directly implicated NKG2D in immune responses to CMV infection in vitro and in vivo. Murine CMV (MCMV) infection potently induced transcription of all five known retinoic acid early inducible 1 (RAE-1) genes (RAE-1α, RAE-1β, RAE-1δ, RAE-1ε, and RAE-1γ), but not H-60. gp40 specifically down-regulated the cell surface expression of all RAE-1 proteins, but not H-60, and diminished NK cell interferon γ production against CMV-infected cells. Consistent with previous findings, a m152 deletion mutant virus (Δm152) was less virulent in vivo than the wild-type Smith strain of MCMV. Treatment of BALB/c mice with a neutralizing anti-NKG2D antibody before infection increased titers of Δm152 virus in the spleen and liver to levels seen with wild-type virus. These experiments demonstrate that gp40 impairs NK cell recognition of virus-infected cells through disrupting the RAE-1–NKG2D interaction.


2001 ◽  
Vol 193 (12) ◽  
pp. 1413-1424 ◽  
Author(s):  
Francesco Colucci ◽  
Eleftheria Rosmaraki ◽  
Søren Bregenholt ◽  
Sandrine I. Samson ◽  
Vincenzo Di Bartolo ◽  
...  

The product of the protooncogene Vav1 participates in multiple signaling pathways and is a critical regulator of antigen–receptor signaling in B and T lymphocytes, but its role during in vivo natural killer (NK) cell differentiation is not known. Here we have studied NK cell development in Vav1−/− mice and found that, in contrast to T and NK-T cells, the absolute numbers of phenotypically mature NK cells were not reduced. Vav1−/− mice produced normal amounts of interferon (IFN)-γ in response to Listeria monocytogenes and controlled early infection but showed reduced tumor clearance in vivo. In vitro stimulation of surface receptors in Vav1−/− NK cells resulted in normal IFN-γ production but reduced tumor cell lysis. Vav1 was found to control activation of extracellular signal-regulated kinases and exocytosis of cytotoxic granules. In contrast, conjugate formation appeared to be only mildly affected, and calcium mobilization was normal in Vav1−/− NK cells. These results highlight fundamental differences between proximal signaling events in T and NK cells and suggest a functional dichotomy for Vav1 in NK cells: a role in cytotoxicity but not for IFN-γ production.


Blood ◽  
2004 ◽  
Vol 103 (12) ◽  
pp. 4573-4580 ◽  
Author(s):  
Sandrine I. Samson ◽  
Sylvie Mémet ◽  
Christian A. J. Vosshenrich ◽  
Francesco Colucci ◽  
Odile Richard ◽  
...  

Abstract Nuclear factor κB (NF-κB) transcription factors are key regulators of immune, inflammatory, and acute-phase responses and are also implicated in the control of cell proliferation and apoptosis. While perturbations in NF-κB activity impact strongly on B- and T-cell development, little is known about the role for NF-κB in natural killer (NK) cell differentiation. Inhibitors of NF-κB (IκBs) act to restrain NF-κB activation. We analyzed the cell-intrinsic effects of deficiencies in 2 IκB members (IκBα and IκBϵ) on NK cell differentiation. Neither IκBα nor IκBϵ deficiency had major effects on NK cell generation, while their combined absence led to NF-κB hyperactivation, resulting in reduced NK cell numbers, incomplete NK cell maturation, and defective interferon γ (IFN-γ) production. Complementary analysis of transgenic mice expressing an NF-κB-responsive reporter gene showed increased NF-κB activity at the stage of NK cell development corresponding to the partial block observed in IκBα × IκBϵ-deficient mice. These results define a critical window in NK cell development in which NF-κB levels may be tightly controlled. (Blood. 2004;103:4573-4580)


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2305-2305
Author(s):  
Il-Kyoo Park ◽  
Chiara Giovenzana ◽  
Tiffany L. Hughes ◽  
Jianhua Yu ◽  
Rossana Trotta ◽  
...  

Abstract Natural killer (NK) cells play an important role in host defense against microbial infection and tumors. Previous studies showed that IL-15 is essential for NK cell differentiation in vitro and in vivo. However the molecular mechanisms by which IL-15 is able to drive NK differentiation remain poorly understood. Here we show that blocking interaction between the receptor tyrosine kinase Axl and its ligands (Gas6 and protein S) by either soluble Axl/immunoglobulin Fc fusion protein (Axl-Fc) or warfarin, a vitamin K inhibitor, diminished the number and percentage of CD3−CD56+ NK cells differentiated from CD34+ human hematopoietic progenitors (HPCs) in blood and secondary lymphoid tissues in the presence of IL-15. Axl-Fc or warfarin increased HPC apoptosis, reduced the frequency of NK precursors, and resulted in impaired IFN-γ production. Mechanistically, in human CD34+ HPCs, Axl-Fc significantly inhibited IL-15-induced signaling events, such as phosphorylation of STAT5 and ERK. Taken together, our results suggest that the Axl/Gas6 pathway is important for IL-15-induced differentiation of NK cells from human CD34+ HPCs.


Author(s):  
Helen R Wagstaffe ◽  
Elizabeth A Clutterbuck ◽  
Viki Bockstal ◽  
Jeroen N Stoop ◽  
Kerstin Luhn ◽  
...  

Abstract Background Antibody Fc-mediated functions, such as antibody-dependent cellular cytotoxicity, contribute to vaccine-induced protection against viral infections. Fc-mediated function of anti-Ebola glycoprotein (GP) antibodies suggest that Fc-dependent activation of effector cells, including natural killer (NK) cells, could play a role in vaccination against Ebola virus disease. Methods We analyzed the effect on primary human NK cell activation of anti-Ebola GP antibody in the serum of United Kingdom–based volunteers vaccinated with the novel 2-dose heterologous adenovirus type 26.ZEBOV, modified vaccinia Ankara–BN-Filo vaccine regimen. Results We demonstrate primary human NK cell CD107a and interferon γ expression, combined with down-regulation of CD16, in response to recombinant Ebola virus GP and post-vaccine dose 1 and dose 2 serum samples. These responses varied significantly with vaccine regimen, and NK cell activation was found to correlate with anti-GP antibody concentration. We also reveal an impact of NK cell differentiation phenotype on antibody-dependent NK cell activation, with highly differentiated CD56dimCD57+ NK cells being the most responsive. Conclusions These findings highlight the dual importance of vaccine-induced antibody concentration and NK cell differentiation status in promoting Fc-mediated activation of NK cells after vaccination, raising a potential role for antibody-mediated NK cell activation in vaccine-induced immune responses.


Blood ◽  
2000 ◽  
Vol 95 (3) ◽  
pp. 984-991 ◽  
Author(s):  
Francesco Colucci ◽  
James P. Di Santo

Fetal liver kinase ligands (flk2L/flt3L) and stem cell factor (SCF) have been shown to promote natural killer (NK) cell differentiation from hematopoietic stem cell (HSC) precursors in vitro. However, the contribution of signaling through the receptors for these growth factors for in vivo NK cell development remains ill-defined. We have analyzed the role of the SCF receptor c-kit in NK cell differentiation by reconstituting NK-deficient mice with fetal liver (FL) HSCs of c-kit−/− (W/W) mice. Although c-kit−/−NK cells were generated inW/W chimeras, they were reduced in number, contained a lower percentage of CD45R (B220)+ cells, and were poorly cytolytic. In vitro experiments showed that generation of NK cells from FL precursors was reduced in the absence of c-kit signaling and that SCF promoted the survival of peripheral c-kit+ NK cells. We conclude that c-kit/SCF interactions in vivo are dispensable for the commitment of HSC to the NK lineage, but they provide essential signals for generating normal numbers of fully mature NK cells.


2019 ◽  
Author(s):  
Kun Li ◽  
Yang Wu ◽  
Young Li ◽  
Qiaoni Yu ◽  
Zhigang Tian ◽  
...  

AbstractNatural killer (NK) cells are essential in controlling cancer and infection. However, little is known about the dynamics of the transcriptional regulatory machinery during NK cell differentiation. In this study, we applied assay of transposase accessible chromatin with sequencing (ATAC-seq) technique in a self-developedin vitroNK cell differentiation system. Analysis of ATAC-seq data illustrated two distinct transcription factor (TF) clusters that dynamically regulate NK cell differentiation. Moreover, two TFs from the second cluster, FOSL2 and EGR2, were identified as novel essential TFs that control NK cell maturation and function. Knocking down either of these two TFs significantly impacted NK cell transformation. Finally, we constructed a genome-wide transcriptional regulatory network that provides an understanding of the regulatory dynamics during NK cell differentiation.


Blood ◽  
2011 ◽  
Vol 117 (10) ◽  
pp. 2874-2882 ◽  
Author(s):  
Karine Crozat ◽  
Céline Eidenschenk ◽  
Baptiste N. Jaeger ◽  
Philippe Krebs ◽  
Sophie Guia ◽  
...  

Abstract Natural killer (NK) cells are innate immune cells that express members of the leukocyte β2 integrin family in humans and mice. These CD11/CD18 heterodimers play critical roles in leukocyte trafficking, immune synapse formation, and costimulation. The cell-surface expression of one of these integrins, CD11b/CD18, is also recognized as a major marker of mouse NK-cell maturation, but its function on NK cells has been largely ignored. Using N-ethyl-N-nitrosourea (ENU) mutagenesis, we generated a mouse carrying an A → T transverse mutation in the Itgb2 gene, resulting in a mutation that prevented the cell-surface expression of CD18 and its associated CD11a, CD11b, and CD11c proteins. We show that β2 integrin–deficient NK cells have a hyporesponsive phenotype in vitro, and present an alteration of their in vivo developmental program characterized by a selective accumulation of c-kit+ cells. NK-cell missing-self recognition was partially altered in vivo, whereas the early immune response to mouse cytomegalovirus (MCMV) infection occurred normally in CD18-deficient mice. Therefore, β2 integrins are required for optimal NK-cell maturation, but this deficiency is partial and can be bypassed during MCMV infection, highlighting the robustness of antiviral protective responses.


Blood ◽  
2004 ◽  
Vol 104 (9) ◽  
pp. 2858-2866 ◽  
Author(s):  
Yanmei Han ◽  
Minghui Zhang ◽  
Nan Li ◽  
Taoyong Chen ◽  
Yi Zhang ◽  
...  

Abstract Natural killer (NK) cell inhibitory receptors play important roles in the regulation of target susceptibility to natural killing. Here, we report the molecular cloning and functional characterization of a novel NK cell receptor, KLRL1, from human and mouse dendritic cells. KLRL1 is a type II transmembrane protein with an immunoreceptor tyrosine-based inhibitory motif and a C-type lectinlike domain. The KLRL1 gene is located in the central region of the NK gene complex in both humans and mice, on human chromosome 12p13 and mouse chromosome 6F3, adjacent to the other KLR genes. KLRL1 is preferentially expressed in lymphoid tissues and immune cells, including NK cells, T cells, dendritic cells, and monocytes or macrophages. Western blot and fluorescence confocal microscopy analyses indicated that KLRL1 is a membrane-associated glycoprotein, which forms a heterodimer with an as yet unidentified partner. Human and mouse KLRL1 are both predicted to contain putative immunoreceptor tyrosine-based inhibitory motifs (ITIMs), and immunoprecipitation experiments demonstrated that KLRL1 associates with the tyrosine phosphatases SHP-1 (SH2-domain-containing protein tyrosine phosphatase 1) and SHP-2. Consistent with its potential inhibitory function, pretreatment of target cells with human KLRL1-Fc fusion protein enhances NK-mediated cytotoxicity. Taken together, our results demonstrate that KLRL1 belongs to the KLR family and is a novel inhibitory NK cell receptor.


Sign in / Sign up

Export Citation Format

Share Document