Ligation of CD40 induces the expression of vascular endothelial growth factor by endothelial cells and monocytes and promotes angiogenesis in vivo

Blood ◽  
2000 ◽  
Vol 96 (12) ◽  
pp. 3801-3808 ◽  
Author(s):  
Michael Melter ◽  
Marlies E. J. Reinders ◽  
Masayuki Sho ◽  
Soumitro Pal ◽  
Christopher Geehan ◽  
...  

Abstract This study addresses a mechanism by which lymphocytes may promote vascular endothelial growth factor (VEGF) expression and angiogenesis in immune inflammation. Resting human umbilical endothelial cells (HUVECs) were found to express low levels of VEGF messenger RNA (mRNA) by reverse transcription polymerase chain reaction and ribonuclease protection assay with little or no change in expression following activation by cytokines, including tumor necrosis factor-α, interleukin (IL)–1, interferon γ, or IL-4. In contrast, treatment of HUVECs and monocytes with soluble CD40 ligand (sCD40L) resulted in a marked dose-dependent induction of VEGF mRNA (approximately 4-fold), which peaked between 1 and 5 hours post-stimulation. Transient transfection of HUVECs was performed with a luciferase reporter construct under the control of the human VEGF promoter. Treatment of transfected HUVECs with sCD40L was found to enhance luciferase activity (approximately 4-fold) compared with controls, similar to the relative fold induction in mRNA expression in parallel cultures. Thus, CD40-dependent VEGF expression was a result of transcriptional control mechanisms. Treatment of HUVECs with sCD40L was also found to function in vitro to promote growth and proliferation in a VEGF-dependent manner, and CD40-dependent HUVEC growth was comparable to that found following treatment with recombinant human VEGF. Furthermore, subcutaneous injection of sCD40L in severe combined immunodeficient and nude mice induced VEGF expression and marked angiogenesis in vivo. Taken together, these findings are consistent with a function for CD40L-CD40 interactions in VEGF-induced angiogenesis and define a mechanistic link between the immune response and angiogenesis.

Blood ◽  
2000 ◽  
Vol 96 (12) ◽  
pp. 3801-3808 ◽  
Author(s):  
Michael Melter ◽  
Marlies E. J. Reinders ◽  
Masayuki Sho ◽  
Soumitro Pal ◽  
Christopher Geehan ◽  
...  

This study addresses a mechanism by which lymphocytes may promote vascular endothelial growth factor (VEGF) expression and angiogenesis in immune inflammation. Resting human umbilical endothelial cells (HUVECs) were found to express low levels of VEGF messenger RNA (mRNA) by reverse transcription polymerase chain reaction and ribonuclease protection assay with little or no change in expression following activation by cytokines, including tumor necrosis factor-α, interleukin (IL)–1, interferon γ, or IL-4. In contrast, treatment of HUVECs and monocytes with soluble CD40 ligand (sCD40L) resulted in a marked dose-dependent induction of VEGF mRNA (approximately 4-fold), which peaked between 1 and 5 hours post-stimulation. Transient transfection of HUVECs was performed with a luciferase reporter construct under the control of the human VEGF promoter. Treatment of transfected HUVECs with sCD40L was found to enhance luciferase activity (approximately 4-fold) compared with controls, similar to the relative fold induction in mRNA expression in parallel cultures. Thus, CD40-dependent VEGF expression was a result of transcriptional control mechanisms. Treatment of HUVECs with sCD40L was also found to function in vitro to promote growth and proliferation in a VEGF-dependent manner, and CD40-dependent HUVEC growth was comparable to that found following treatment with recombinant human VEGF. Furthermore, subcutaneous injection of sCD40L in severe combined immunodeficient and nude mice induced VEGF expression and marked angiogenesis in vivo. Taken together, these findings are consistent with a function for CD40L-CD40 interactions in VEGF-induced angiogenesis and define a mechanistic link between the immune response and angiogenesis.


2007 ◽  
Vol 18 (1) ◽  
pp. 14-23 ◽  
Author(s):  
Madhuri Ramanathan ◽  
Grace Pinhal-Enfield ◽  
Irene Hao ◽  
Samuel Joseph Leibovich

Macrophages are an important source of vascular endothelial growth factor (VEGF). Adenosine A2Areceptor (A2AR) agonists with Toll-like receptor (TLR) 2, 4, 7, and 9 agonists synergistically induce macrophage VEGF expression. We show here using VEGF promoter-luciferase reporter constructs that the TLR4 agonist Escherichia coli lipopolysaccharide (LPS) and the A2AR agonists NECA and CGS21680 synergistically augment VEGF transcription in macrophages and that the HRE in the VEGF promoter is essential for this transcription. We examined whether LPS and/or NECA induce HIF-1α expression. HIF-1α mRNA levels were increased in LPS-treated macrophages in an NF-κB–dependent manner; NECA strongly increased these levels in an A2AR-dependent manner. LPS induced luciferase expression from a HIF-1α promoter-luciferase construct in an A2AR-independent manner. Further stimulation with NECA did not increase HIF-1α promoter activity, indicating that the A2AR-dependent increase in HIF-1α mRNA is post-transcriptional. LPS/NECA treatment also increased HIF-1α protein and DNA binding levels. Deletion of putative NF-κB–binding sites from the VEGF promoter did not affect LPS/NECA-induced VEGF promoter activity, suggesting that NF-κB is not directly involved in VEGF transcription. Taken together, these data indicate that LPS/NECA-induced VEGF expression involves transcriptional regulation of the VEGF promoter by HIF-1α through the HRE. HIF-1α is transcriptionally induced by LPS and post-transcriptionally up-regulated in an A2AR-dependent manner.


Blood ◽  
2000 ◽  
Vol 95 (6) ◽  
pp. 1979-1987 ◽  
Author(s):  
Victoria L. Bautch ◽  
Sambra D. Redick ◽  
Aaron Scalia ◽  
Marco Harmaty ◽  
Peter Carmeliet ◽  
...  

Abstract Vascular endothelial growth factor (VEGF) signaling is required for both differentiation and proliferation of vascular endothelium. Analysis of differentiated embryonic stem cells with one or both VEGF-A alleles deleted showed that both the differentiation and the expansion of endothelial cells are blocked during vasculogenesis. Blood island formation was reduced by half in hemizygous mutant VEGF cultures and by 10-fold in homozygous mutant VEGF cultures. Homozygous mutant cultures could be partially rescued by the addition of exogenous VEGF. RNA levels for the endothelial adhesion receptors ICAM-2 and PECAM were reduced in homozygous mutant cultures, but ICAM-2 RNA levels decreased substantially, whereas PECAM RNA levels remained at hemizygous levels. The quantitative data correlated with the antibody staining patterns because cells that were not organized into vessels expressed PECAM but not ICAM-2. These PECAM+ cell clumps accumulated in mutant cultures as vessel density decreased, suggesting that they were endothelial cell precursors blocked from maturation. A subset of PECAM+ cells in clumps expressed stage-specific embryonic antigen-1 (SSEA-1), and all were ICAM-2(−) and CD34(−), whereas vascular endothelial cells incorporated into vessels were PECAM(+), ICAM-2(+), CD34(+), and SSEA-1(−). Analysis of flk-1 expression indicated that a subset of vascular precursor cells coexpressed PECAM and flk-1. These data suggest that VEGF signaling acts in a dose-dependent manner to affect both a specific differentiation step and the subsequent expansion of endothelial cells.


Blood ◽  
2000 ◽  
Vol 96 (13) ◽  
pp. 4216-4221 ◽  
Author(s):  
Henk M. W. Verheul ◽  
Anita S. Jorna ◽  
Klaas Hoekman ◽  
Henk J. Broxterman ◽  
Martijn F. B. G. Gebbink ◽  
...  

Abstract Coagulation abnormalities, including an increased platelet turnover, are frequently found in patients with cancer. Because platelets secrete angiogenic factors on activation, this study tested the hypothesis that platelets contribute to angiogenesis. Stimulation with vascular endothelial growth factor (VEGF, 25 ng/mL) of human umbilical vein endothelial cells (HUVECs) promoted adhesion of nonactivated platelets 2.5-fold. In contrast, stimulation of HUVECs with basic fibroblast growth factor (bFGF) did not promote platelet adhesion. By blocking tissue factor (TF) activity, platelet adhesion was prevented and antibodies against fibrin(ogen) and the platelet-specific integrin, αIIbβ3, inhibited platelet adhesion for 70% to 90%. These results indicate that VEGF-induced platelet adhesion to endothelial cells is dependent on activation of TF. The involvement of fibrin(ogen) and the αIIbβ3 integrin, which exposes a high-affinity binding site for fibrin(ogen) on platelet activation, indicates that these adhering platelets are activated. This was supported by the finding that the activity of thrombin, a product of TF-activated coagulation and a potent platelet activator, was required for platelet adhesion. Finally, platelets at physiologic concentrations stimulated proliferation of HUVECs, indicative of proangiogenic activity in vivo. These results support the hypothesis that platelets contribute to tumor-induced angiogenesis. In addition, they may explain the clinical observation of an increased platelet turnover in cancer patients. Platelets may also play an important role in other angiogenesis-dependent diseases in which VEGF is involved, such as diabetes and autoimmune diseases.


1997 ◽  
Vol 82 (7) ◽  
pp. 2135-2142
Author(s):  
Lane K. Christenson ◽  
Richard L. Stouffer

Granulosa cells in the ovulatory follicle express messenger ribonucleic acid encoding vascular endothelial growth factor (VEGF), an agent that may mediate the neovascularization of the developing corpus luteum, but it is not known whether luteinizing granulosa cells synthesize and secrete VEGF during the periovulatory interval. Studies were designed to evaluate the effects of an in vivo gonadotropin surge on VEGF production by macaque granulosa cells (study 1) and to test the hypothesis that gonadotropins act directly on granulosa cells to regulate VEGF production (study 2). Monkeys received a regimen of exogenous gonadotropins to promote the development of multiple preovulatory follicles. Nonluteinized granulosa cells (i.e. preovulatory; NLGC) and luteinized granulosa cells (i.e. periovulatory; LGC) were aspirated from follicles before and 27 h after an ovulatory gonadotropin bolus, respectively. Cells were either incubated for 24 h in medium with or without 100 ng/mL hCG (study 1) or cultured for 6 days in medium with or without 100 ng/mL hCG or 0.1, 1, 10, and 100 ng/mL of recombinant human LH (r-hLH) or r-hFSH (study 2). Culture medium was assayed for VEGF and progesterone. In study 1, LGC produced 8-fold greater levels of VEGF than NLGC (899 ± 471 vs. 111 ± 26 pg/mL, mean ± sem; P < 0.05). In vitro treatment with hCG increased (P < 0.05) VEGF production by NLGC to levels that were not different from the LGC incubated under control conditions. In vivo bolus doses of r-hCG (100 and 1000 IU) and r-hFSH (2500 IU) were equally effective in elevating granulosa cell VEGF production. In study 2, in vitro treatment with r-hFSH, r-hLH, and hCG markedly increased (P< 0.05) VEGF and progesterone production by the NLGC in a dose- and time-dependent manner. By comparison, the three gonadotropins (100 ng/mL dose) only modestly increased VEGF and progesterone production by LGC. These experiments demonstrate a novel role for the midcycle surge of gonadotropin (LH/CG or FSH) in primates to promote VEGF production by granulosa cells in the periovulatory follicle. Further, the data demonstrate that FSH-like as well as LH-like gonadotropins directly stimulate VEGF synthesis by granulosa cells.


Sign in / Sign up

Export Citation Format

Share Document