Different mechanisms define the antiadhesive function of high molecular weight kininogen in integrin- and urokinase receptor–dependent interactions

Blood ◽  
2000 ◽  
Vol 96 (2) ◽  
pp. 514-522 ◽  
Author(s):  
Triantafyllos Chavakis ◽  
Sandip M. Kanse ◽  
Florea Lupu ◽  
Hans-Peter Hammes ◽  
Werner Müller-Esterl ◽  
...  

Proteolytic cleavage of single-chain high molecular weight kininogen (HK) by kallikrein releases the short-lived vasodilator bradykinin and leaves behind 2-chain high molecular weight kininogen (HKa) that has been previously reported to exert antiadhesive properties as well as to bind to the urokinase receptor (uPAR) on endothelial cells. In this study we defined the molecular mechanisms for the antiadhesive effects of HKa related to disruption of integrin- and uPAR-mediated cellular interactions. Vitronectin (VN) but not fibrinogen or fibronectin-dependent vβ3 integrin–mediated adhesion of endothelial cells was blocked by HKa or its isolated domain 5. In a purified system, HKa but not HK competed for the interaction of VN with vβ3 integrin, because HKa and the isolated domain 5 but not HK bound to both multimeric and native VN in a Zn2+-dependent manner. The interaction between HKa or domain 5 with VN was prevented by heparin, plasminogen activator inhibitor-1, and a recombinant glutathione-S-transferase (GST)-fusion peptide GST-VN (1-77) consisting of the amino terminal portion of VN (amino acids 1-77), but not by a cyclic arginyl-glycyl-aspartyl peptide, indicating that HKa interacts with the amino terminal portion of VN (“somatomedin B region”). Furthermore, we have confirmed that HKa but not HK bound to uPAR and to the truncated 2-domain form of uPAR lacking domain 1 in a Zn2+-dependent manner. Through these interactions, HKa or its recombinant His-Gly-Lys–rich domain 5 completely inhibited the uPAR-dependent adhesion of myelomonocytic U937 cells and uPAR-transfected BAF-3 cells to VN and thereby promoted cell detachment. By immunogold electron microscopy, both VN and HK/HKa were found to be colocalized in sections from human atherosclerotic coronary artery, indicating that the described interactions are likely to take place in vivo. Taken together, HK and HKa inhibit different VN-responsive adhesion receptor systems and may thereby influence endothelial cell- or leukocyte-related interactions in the vasculature, particularly under inflammatory conditions.

Blood ◽  
2000 ◽  
Vol 96 (2) ◽  
pp. 514-522 ◽  
Author(s):  
Triantafyllos Chavakis ◽  
Sandip M. Kanse ◽  
Florea Lupu ◽  
Hans-Peter Hammes ◽  
Werner Müller-Esterl ◽  
...  

Abstract Proteolytic cleavage of single-chain high molecular weight kininogen (HK) by kallikrein releases the short-lived vasodilator bradykinin and leaves behind 2-chain high molecular weight kininogen (HKa) that has been previously reported to exert antiadhesive properties as well as to bind to the urokinase receptor (uPAR) on endothelial cells. In this study we defined the molecular mechanisms for the antiadhesive effects of HKa related to disruption of integrin- and uPAR-mediated cellular interactions. Vitronectin (VN) but not fibrinogen or fibronectin-dependent vβ3 integrin–mediated adhesion of endothelial cells was blocked by HKa or its isolated domain 5. In a purified system, HKa but not HK competed for the interaction of VN with vβ3 integrin, because HKa and the isolated domain 5 but not HK bound to both multimeric and native VN in a Zn2+-dependent manner. The interaction between HKa or domain 5 with VN was prevented by heparin, plasminogen activator inhibitor-1, and a recombinant glutathione-S-transferase (GST)-fusion peptide GST-VN (1-77) consisting of the amino terminal portion of VN (amino acids 1-77), but not by a cyclic arginyl-glycyl-aspartyl peptide, indicating that HKa interacts with the amino terminal portion of VN (“somatomedin B region”). Furthermore, we have confirmed that HKa but not HK bound to uPAR and to the truncated 2-domain form of uPAR lacking domain 1 in a Zn2+-dependent manner. Through these interactions, HKa or its recombinant His-Gly-Lys–rich domain 5 completely inhibited the uPAR-dependent adhesion of myelomonocytic U937 cells and uPAR-transfected BAF-3 cells to VN and thereby promoted cell detachment. By immunogold electron microscopy, both VN and HK/HKa were found to be colocalized in sections from human atherosclerotic coronary artery, indicating that the described interactions are likely to take place in vivo. Taken together, HK and HKa inhibit different VN-responsive adhesion receptor systems and may thereby influence endothelial cell- or leukocyte-related interactions in the vasculature, particularly under inflammatory conditions.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3305-3305
Author(s):  
Venkaiah Betapudi ◽  
Keith R. McCrae

Abstract Abstract 3305 Background and objective: High molecular weight kininogen (HK) is an abundant plasma protein that serves as an important component of the intrinsic pathway of coagulation. HK normally circulates as in the single chain form, but may be cleaved by plasma kallikrein to release the nonapeptide bradykinin, resulting in the formation cleaved high molecular weight kininogen (HKa) that consists of a heavy and light chain linked by a single disulfide bond. Conformational changes occurring after kallikrein cleavage result in increased exposure of histidine and glycine-rich regions with kininogen domain 5 that impart HKa with unique properties, including the ability to inhibit angiogenesis by causing selective apoptosis of proliferating endothelial cells. However, the receptors that mediate the antiangiogenic activity of HKa remain controversial, and the signaling pathways that lead to apoptosis have not been defined. Previous studies suggested possible involvement of SRC family kinases (SFK) in this process, and the purpose of this work was to further define the activation of SFKs and their downstream targets during HKa-induced endothelial cell apoptosis. Results: We first assessed the activation of SFKs in proliferating endothelial cells stimulated with bFGF before and after incubation with HKa (6–20 nM). SFKs are maintained in an inactive state through tyrosine phosphorylation of their C-terminal region mediated by the negative regulator C-terminal Src kinase (Csk). Exposure of endothelial cells to HKa caused downregulation of Csk in a dose-dependent manner within 60 minutes. In parallel, we observed a significant increase in expression of the proapoptotic SFK Lck in endothelial cells exposed to HKa, though expression of other SFKs including Lyn, Fyn, Src, Hck and Blk were not significantly altered. Increased expression of Lck was associated with activation of p53 and increased expression of the pro-apoptotic Bcl-2 family members Bax and Bak. Endothelial cell lysates prepared within 60 minutes of exposure to HKa demonstrated significant increases in the activity of caspases 3 and 7, as well as depletion of DNA fragmentation factors (DFF) 45 and 35, which cleave and inactivate DFF40, a major endonuclease involved in apoptosis. In parallel studies, endothelial cells depleted of Lck by treatment with Lck siRNA displayed loss of p53 phosphorylation, caspase 3 and 7 activity, and expression of Bax and Bad with no effects on the expression of Bad and Bid. Conclusion: These findings demonstrate a critical role for Csk in regulation of SFK activation and endothelial homeostasis, and demonstrate that downregulation of Csk by HKa leads to activation of a Lck-dependent, p53-mediated apoptotic pathway. Increasing the expression of Lck may represent a novel mechanism for regulation of aberrant angiogenesis. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1983 ◽  
Vol 62 (2) ◽  
pp. 457-463 ◽  
Author(s):  
M Maier ◽  
KF Austen ◽  
J Spragg

Abstract Human high molecular weight kininogen (HMWK), a single-chain protein with mol wt 120,000, is cleaved by human urinary kallikrein (HUK) to release kinin from within a disulfide loop and form a two-chain protein that retains all the procoagulant activity of the native molecule. Cleavage of HMWK by HUK is associated with a reduction in size to mol wt 115,000, as assessed by SDS-PAGE of unreduced protein, whereas the two chains of the reduced protein present together as a single broad band with mol wt 64,000. The 64,000 chain with procoagulant activity was chromatographically separated from the nonfunctional chain of similar size. The homogeneous procoagulant chain had an amino acid composition similar to that of smaller procoagulant (“light”) chains isolated by others upon cleavage of HMWK with plasma kallikrein and elicited an antiserum that was monospecific by Ouchterlony analysis and inhibited the procoagulant function of HMWK. Thus, the limited proteolysis of HMWK by HUK has permitted, for the first time, the isolation of a stable procoagulant chain that is equal in size to the nonfunctional chain. The common terminology of “heavy” and “light” chain for kinin-free kininogen obtained with plasma kallikrein reflects the continued degradation of the procoagulant carboxyterminal chain and is not appropriate for the initial two-chain product formed when kinin is released from HMWK. It is proposed that the initial cleavage products of HMWK be designated the A-chain, the B-fragment, and the C- chain, representing the amino-terminal chain, the released vasoactive peptide containing the bradykinin sequence, and the carboxy-terminal procoagulant chain, respectively. Thus, intact HMWK would contain, in sequence, A, B, and C regions.


1979 ◽  
Vol 150 (5) ◽  
pp. 1122-1133 ◽  
Author(s):  
RC Wiggins ◽  
CC Cochrane

Proteolytic cleavage and activation of isolated, single chain, zymogen Hageman factor was observed in the presence of kaolin alone. The rate of cleavage of kaolin-bound Hageman factor was enhanced 50-fold by the presence of prekallikrein and high molecular weight kininogen. The two-chain 82,000 dalton form of activated Hageman factor (α-HF(a)) also cleaved kaolin- bound single-chain Hageman factor in a dose-dependent manner, yielding fragments of 28,000 and, 50,000 dahons under reducing conditions. Cleavage of kaolin-bound single-chain Hageman factor was not inhibited by preincubation with diisopropylfluorophosphate (12 mM) for 10 min, but long-term incubation of Hageman factor with diisopropylfluorophosphate (up to 48 h) resulted in inhibition of cleavage of kaolin-bound Hageman factor to an extent proportional to the inhibition of procoagulant Hageman factor activity. Hageman factor cleavage was maximal when the kaolin concentration was {approximately} 10-fold greater than the Hageman factor concentration (wt:wt), and was partially inhibited by high molecular weight kininogen. Kaolin-bound Hageman factor cleaved clotting factor XI in an amount which correlated with the extent of cleavage of the Hageman factor. These findings are compatible with the concept that single-chain Hageman factor and α- HF(a), are both capable of cleaving and activating kaolin-bound Hageman factor and that a close molecular association of kaolin-bound Hageman factor molecules is required for this reaction.


2002 ◽  
Vol 80 (2) ◽  
pp. 85-90 ◽  
Author(s):  
Jing-Chuan Zhang ◽  
Xiaoping Qi ◽  
Jose' Juarez ◽  
Marian Plunkett ◽  
Fernando Donaté ◽  
...  

We recently reported that the two-chain form of human high molecular weight kininogen (HKa) inhibits angiogenesis by inducing endothelial cell apoptosis (Zhang et al. 2000). This property appears to be primarily conferred by HKa domain 5 (HKa D5). In this manuscript, we further characterize the activity of these polypeptides toward proliferating endothelial cells, as well as their in vivo anti-angiogenic activity in the chick chorioallantoic membrane (CAM). We also demonstrate that short peptides derived from endothelial cell binding regions in HKa domains 3 and 5 inhibit endothelial cell proliferation and induce endothelial cell apoptosis. Like HKa and HKa D5, peptides derived from the latter domain induce endothelial cell apoptosis in a Zn2+-dependent manner, while those derived from domain 3 function independently of Zn2+. The implications of these findings to the regulation of angiogenesis and development of anti-angiogenic therapeutics are discussed.Key words: angiogenesis, kininogen, endothelial cells, apoptosis, peptides.


Blood ◽  
1983 ◽  
Vol 62 (2) ◽  
pp. 457-463
Author(s):  
M Maier ◽  
KF Austen ◽  
J Spragg

Human high molecular weight kininogen (HMWK), a single-chain protein with mol wt 120,000, is cleaved by human urinary kallikrein (HUK) to release kinin from within a disulfide loop and form a two-chain protein that retains all the procoagulant activity of the native molecule. Cleavage of HMWK by HUK is associated with a reduction in size to mol wt 115,000, as assessed by SDS-PAGE of unreduced protein, whereas the two chains of the reduced protein present together as a single broad band with mol wt 64,000. The 64,000 chain with procoagulant activity was chromatographically separated from the nonfunctional chain of similar size. The homogeneous procoagulant chain had an amino acid composition similar to that of smaller procoagulant (“light”) chains isolated by others upon cleavage of HMWK with plasma kallikrein and elicited an antiserum that was monospecific by Ouchterlony analysis and inhibited the procoagulant function of HMWK. Thus, the limited proteolysis of HMWK by HUK has permitted, for the first time, the isolation of a stable procoagulant chain that is equal in size to the nonfunctional chain. The common terminology of “heavy” and “light” chain for kinin-free kininogen obtained with plasma kallikrein reflects the continued degradation of the procoagulant carboxyterminal chain and is not appropriate for the initial two-chain product formed when kinin is released from HMWK. It is proposed that the initial cleavage products of HMWK be designated the A-chain, the B-fragment, and the C- chain, representing the amino-terminal chain, the released vasoactive peptide containing the bradykinin sequence, and the carboxy-terminal procoagulant chain, respectively. Thus, intact HMWK would contain, in sequence, A, B, and C regions.


2013 ◽  
Vol 394 (3) ◽  
pp. 385-391 ◽  
Author(s):  
Thomas Kryza ◽  
Gilles Lalmanach ◽  
Marion Lavergne ◽  
Fabien Lecaille ◽  
Pascale Reverdiau ◽  
...  

Abstract Kallikrein-12 (KLK12) may play an important role in angiogenesis modulating proangiogenic factor bioavailability and activating the kinin receptor B2 pathway. We studied whether KLK12 had an impact on angiogenesis and the activation of kinin receptor B2 results from the KLK12-dependent generation of kinins. KLK12 efficiently hydrolyzed high molecular weight kininogen, liberating a fragment containing the carboxy-terminal end of kinins. The kininogenase activity of KLK12 was poor, however, due to the cleavage resistance of the N-terminal side of the kinin sequence. A very low amount of kinins was accordingly released after in vitro incubation of high molecular weight kininogen with KLK12 and thus the proangiogenic activity of KLK12 in lung endothelial cells was not related to a kinin release.


Sign in / Sign up

Export Citation Format

Share Document