Identification of novel circulating human embryonic blood stem cells

Blood ◽  
2000 ◽  
Vol 96 (5) ◽  
pp. 1740-1747 ◽  
Author(s):  
Lisa Gallacher ◽  
Barbara Murdoch ◽  
Dongmei Wu ◽  
Francis Karanu ◽  
Fraser Fellows ◽  
...  

Abstract Using murine models, primitive hematopoietic cells capable of repopulation have been shown to reside in various anatomic locations, including the aortic gonad mesonephros, fetal liver, and bone marrow. These sites are thought to be seeded by stem cells migrating through fetal circulation and would serve as ideal targets for in utero cellular therapy. In humans, however, it is unknown whether similar stem cells exist. Here, we identify circulating hematopoeitic cells present during human in utero development that are capable of multilineage repopulation in immunodeficient NOD/SCID (nonobese diabetic/severe combined immunodeficient) mice. Using limiting dilution analysis, the frequency of these fetal stem cells was found to be 1 in 3.2 × 105, illustrating a 3- and 22-fold enrichment compared with full-term human cord blood and circulating adult mobilized–peripheral blood, respectively. Comparison of in vivo differentiation and proliferative capacity demonstrated that circulating fetal stem cells are intrinsically distinct from hematopoietic stem cells found later in human development and those derived from the fetal liver or fetal bone marrow compartment at equivalent gestation. Taken together, these studies demonstrate the existence of unique circulating stem cells in early human embryonic development that provide a novel and previously unexplored source of pluripotent stem cell targets for cellular and gene-based fetal therapies.

Blood ◽  
2000 ◽  
Vol 96 (5) ◽  
pp. 1740-1747 ◽  
Author(s):  
Lisa Gallacher ◽  
Barbara Murdoch ◽  
Dongmei Wu ◽  
Francis Karanu ◽  
Fraser Fellows ◽  
...  

Using murine models, primitive hematopoietic cells capable of repopulation have been shown to reside in various anatomic locations, including the aortic gonad mesonephros, fetal liver, and bone marrow. These sites are thought to be seeded by stem cells migrating through fetal circulation and would serve as ideal targets for in utero cellular therapy. In humans, however, it is unknown whether similar stem cells exist. Here, we identify circulating hematopoeitic cells present during human in utero development that are capable of multilineage repopulation in immunodeficient NOD/SCID (nonobese diabetic/severe combined immunodeficient) mice. Using limiting dilution analysis, the frequency of these fetal stem cells was found to be 1 in 3.2 × 105, illustrating a 3- and 22-fold enrichment compared with full-term human cord blood and circulating adult mobilized–peripheral blood, respectively. Comparison of in vivo differentiation and proliferative capacity demonstrated that circulating fetal stem cells are intrinsically distinct from hematopoietic stem cells found later in human development and those derived from the fetal liver or fetal bone marrow compartment at equivalent gestation. Taken together, these studies demonstrate the existence of unique circulating stem cells in early human embryonic development that provide a novel and previously unexplored source of pluripotent stem cell targets for cellular and gene-based fetal therapies.


Blood ◽  
1991 ◽  
Vol 78 (4) ◽  
pp. 1132-1139 ◽  
Author(s):  
DW Clapp ◽  
LL Dumenco ◽  
M Hatzoglou ◽  
SL Gerson

Abstract Retroviral-mediated gene transfer into hematopoietic precursors often results in only short-term gene transduction in vivo. Loss of the transduced genetic material over time may be caused by the limited ability of retroviral infection to transduce genes into early, pluripotent hematopoietic stem cells. Because fetal liver contains actively proliferating multipotential stem cells that should be more susceptible to retroviral-mediated gene transfer than quiescent cells derived from adult bone marrow, these cells may be an ideal target for gene transduction. Furthermore, physiologic expansion of these cells during development obviates the need for marrow ablation during gene therapy in vivo. We performed in utero gene transfer by injecting high titer replication-defective retrovirus in vivo into the livers of 11, 14, 16, and 18 day gestation rats. After birth, the rats were analyzed for the presence of proviral integration and gene expression. The efficiency of gene transfer into bone marrow cells was greatest in rats infected at day 14 to 16 of gestation. In rats killed at 1 to 26 weeks of age, gene transfer was detected by Southern analysis in 48% and by polymerase chain reaction in 86% of bone marrow samples. The provirus was also detected in white blood cells, the granulocyte-macrophage colony-forming unit, thymus, spleen, liver, and lung. The presence of the transgene in bone marrow and other hematopoietic tissues at 26 weeks of age suggests that early hematopoietic precursors present in the fetal liver are susceptible targets for gene transfer and that these cells become resident in the bone marrow of the adult animal. This model is a new technique for gene transduction into proliferating hematopoietic cells in vivo that avoids bone marrow transplantation and has potential application in the correction of genetic defects in utero.


Blood ◽  
1991 ◽  
Vol 78 (4) ◽  
pp. 1132-1139
Author(s):  
DW Clapp ◽  
LL Dumenco ◽  
M Hatzoglou ◽  
SL Gerson

Retroviral-mediated gene transfer into hematopoietic precursors often results in only short-term gene transduction in vivo. Loss of the transduced genetic material over time may be caused by the limited ability of retroviral infection to transduce genes into early, pluripotent hematopoietic stem cells. Because fetal liver contains actively proliferating multipotential stem cells that should be more susceptible to retroviral-mediated gene transfer than quiescent cells derived from adult bone marrow, these cells may be an ideal target for gene transduction. Furthermore, physiologic expansion of these cells during development obviates the need for marrow ablation during gene therapy in vivo. We performed in utero gene transfer by injecting high titer replication-defective retrovirus in vivo into the livers of 11, 14, 16, and 18 day gestation rats. After birth, the rats were analyzed for the presence of proviral integration and gene expression. The efficiency of gene transfer into bone marrow cells was greatest in rats infected at day 14 to 16 of gestation. In rats killed at 1 to 26 weeks of age, gene transfer was detected by Southern analysis in 48% and by polymerase chain reaction in 86% of bone marrow samples. The provirus was also detected in white blood cells, the granulocyte-macrophage colony-forming unit, thymus, spleen, liver, and lung. The presence of the transgene in bone marrow and other hematopoietic tissues at 26 weeks of age suggests that early hematopoietic precursors present in the fetal liver are susceptible targets for gene transfer and that these cells become resident in the bone marrow of the adult animal. This model is a new technique for gene transduction into proliferating hematopoietic cells in vivo that avoids bone marrow transplantation and has potential application in the correction of genetic defects in utero.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3240-3240
Author(s):  
Chris Derderian ◽  
Charmin King ◽  
Priya Togarrati ◽  
Agnieszka Czechowicz ◽  
Ninnia Lescano ◽  
...  

Abstract Introduction In utero hematopoietic cell transplantation (IUHCTx) is a promising strategy to treat congenital disorders as the fetal host can potentially be tolerized to transplanted cells early in gestation. However, levels of engraftment have been low and fetal host conditioning strategies to increase space in hematopoietic niches have not been widely explored. We hypothesized that depletion of fetal host hematopoietic stem cells (HSC) using an antibody against the c-kit receptor (ACK2), a strategy which selectively depletes HSC by disrupting stem cell factor (SCF) signaling, would improve engraftment after HSC transplantation. Methods Fetal C57B6.CD45.2 (B6) mice were injected with increasing doses of ACK2 (2.5-50 µg/fetus) or isotype control antibody on E14.5 and surviving pups were transplanted with congenic B6.CD45.1 fetal liver mononuclear cells (2.5×106 cells/pup) on day of life 1 (P1, 7 days after in utero injection), allowing post-transplantation host monitoring. Host HSC depletion and residual serum ACK2 concentration were examined on P1. Peripheral blood chimerism, defined as donor/(donor+host) CD45 cells, as well as the lineage distribution of chimeric cells, were determined beginning 4 weeks after transplantation. Results Survival to birth among fetuses injected with 2.5, 5, or 10 µg of ACK2 was similar to controls (control: 74%; 2.5 µg: 80%; 5 µg: 71%; 10 µg: 60%, p=0.2 by chi-square test, n≥45/group) but was significantly lower at higher concentrations (20 µg: 37%; 50 µg: 31%, p<0.001 vs. control, n≥70/group). Transient anemia and leukopenia were observed on P1 with doses ≥ 5 µg which resolved by P7 (n=17). Four of 19 pups previously treated with ACK2 (2.5-10 µg) and observed long-term had patchy coat discoloration, possibly a manifestation of disruption of C-kit+ melanocyte migration. In utero ACK2 treatment resulted in significant and dose-dependent depletion of host HSCs (defined as Lin-Sca-1+C-kit+, KLS) in the bone marrow of treated animals by P1 (Figure 1A). There was no depletion of KLS cells in the liver. Residual ACK2 antibody was undetectable in the serum by P1, validating our strategy of in utero depletion and neonatal transplantation. In animals receiving neonatal transplantation, ACK2 depletion resulted in a significant increase in levels of engraftment 4 weeks after transplantation compared to controls (control: 3.3±0.3%; 2.5 µg: 13±1.4%; 5 µg: 10±2.4%; 10 µg: 11±2.0%, p<0.05 for each dose vs control by ANOVA). Accordingly, we detected an increased number total bone marrow KLS cells 7 days after transplantation in ACK2 treated animals compared to controls (412±45.9 vs. 933±112 cells, p=0.01, n≥3/group). Moreover, levels of chimerism increased over time in treated animals (Figure 1B; 12 weeks: 2.5 µg: 190%; 5 µg: 170%; 10 µg: 160%) while they remained unchanged in controls. Overall, levels of chimerism achieved with ACK2 treatment were significantly higher than that observed in animals that received in utero transplantation without ACK2 depletion. Lineage analysis of peripheral blood for granulocytes, B cells, and T cells indicated an equal increase in all lineages, suggesting ACK2 depletes true HSCs and not committed progenitors. Interestingly, ACK2 depletion at doses 2.5-10 µg did not result in engraftment of allogeneic BALB/c cells (n=11), indicating that allogeneic neonatal transplantation, unlike in utero transplantation, is limited by a host immune response which is unaffected by ACK2. Conclusion We have demonstrated that fetal HSC depletion using ACK2 can lead to clinically relevant levels of donor cell engraftment with minimal toxicity. In previous studies with this antibody, host HSC depletion required either immunodeficient animals or concurrent irradiation, whereas we achieved depletion in wild-type fetal hosts, suggesting differences in fetal vs. adult HSC sensitivity to SCF signaling. Future studies should explore this strategy to improve engraftment in large animals models of IUHCTx. Disclosures: Weissman: Amgen, Systemix, Stem cells Inc, Cellerant: Consultancy, Employment, Equity Ownership, Membership on an entity’s Board of Directors or advisory committees.


Blood ◽  
1999 ◽  
Vol 93 (1) ◽  
pp. 80-86 ◽  
Author(s):  
Shai Erlich ◽  
Silvia R.P. Miranda ◽  
Jan W.M. Visser ◽  
Arie Dagan ◽  
Shimon Gatt ◽  
...  

Abstract The general utility of a novel, fluorescence-based procedure for assessing gene transfer and expression has been demonstrated using hematopoietic stem and progenitor cells. Lineage-depleted hematopoietic cells were isolated from the bone marrow or fetal livers of acid sphingomyelinase–deficient mice, and retrovirally transduced with amphotropic or ecotropic vectors encoding a normal acid sphingomyelinase (ASM) cDNA. Anti–c-Kit antibodies were then used to label stem- and progenitor-enriched cell populations, and the Bodipy fluorescence was analyzed in each group after incubation with a Bodipy-conjugated sphingomyelin. Only cells expressing the functional ASM (ie, transduced) could degrade the sphingomyelin, thereby reducing their Bodipy fluorescence as compared with nontransduced cells. The usefulness of this procedure for the in vitro assessment of gene transfer into hematopoietic stem cells was evaluated, as well as its ability to provide an enrichment of transduced stem cells in vivo. To show the value of this method for in vitro analysis, the effects of retroviral transduction using ecotropic versus amphotropic vectors, various growth factor combinations, and adult bone marrow versus fetal liver stem cells were assessed. The results of these studies confirmed the fact that ecotropic vectors were much more efficient at transducing murine stem cells than amphotropic vectors, and that among the three most commonly used growth factors (stem cell factor [SCF] and interleukins 3 and 6 [IL-3 and IL-6]), SCF had the most significant effect on the transduction of stem cells, whereas IL-6 had the most significant effect on progenitor cells. In addition, it was determined that fetal liver stem cells were only approximately twofold more “transducible” than stem cells from adult bone marrow. Transplantation of Bodipy-selected bone marrow cells into lethally irradiated mice showed that the number of spleen colony-forming units that were positive for the retroviral vector (as determined by polymerase chain reaction) was 76%, as compared with 32% in animals that were transplanted with cells that were nonselected. The methods described within this manuscript are particularly useful for evaluating hematopoietic stem cell gene transfer in vivo because the marker gene used in the procedure (ASM) encodes a naturally occurring mammalian enzyme that has no known adverse effects, and the fluorescent compound used for selection (Bodipy sphingomyelin) is removed from the cells before transplantation.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 857-857
Author(s):  
Gregor B. Adams ◽  
Ian R. Alley ◽  
Karissa T. Chabner ◽  
Ung-il Chung ◽  
Emily S. Marsters ◽  
...  

Abstract During development, hematopoietic stem cells (HSCs) translocate from the fetal liver to the bone marrow, which remains the site of hematopoiesis throughout adulthood. In the bone marrow the HSCs are located at the endosteal surface, where the osteoblasts are a key component of the stem cell niche. The exogenous signals that specifically direct HSCs to the bone marrow have been thought to include stimulation of the chemokine receptor CXCR4 by its cognate ligand stromal derived factor-1α (SDF-1α or CXCL12). However, experiments in which CXCR4−/− fetal liver hematopoietic cells were transplanted into wild-type hosts demonstrated efficient engraftment of the HSCs in the bone marrow. In addition, treatment of HSCs with inhibitors of Gαi-coupled signaling, which blocks transmigration towards SDF-1αin vitro, does not affect bone marrow homing and engraftment in vivo. Therefore, we examined whether Gsα-coupled mechanisms play a key role in the engraftment of the HSCs in the bone marrow environment. Utilizing an inducible-conditional knockout of Gsα, we found that deletion of the gene in hematopoietic bone marrow cells did not affect their ability to perform in the in vitro primitive CFU-C or LTC-IC assay systems. However, Gsα−/− cells were unable to establish effective hematopoiesis in the bone marrow microenvironment in vivo in a competitive repopulation assay (41.1% contribution from wild-type cells versus 1.4% from knockout cells). These effects were not due to an inability of the cells to function in the bone marrow in vivo as deletion of Gsα following establishment of hematopoiesis had no effects on the HSCs. Examining the ability of the HSCs to home to the bone marrow, though, demonstrated that deletion of Gsα resulted in a marked impairment of the ability of the stem cells to localize to the marrow space (approximately 9-fold reduction in the level of primitive cell homing). Furthermore, treatment of BM MNCs with an activator of Gsα augmented the cells homing and thus engraftment potential. These studies demonstrate that Gsα is critical to the localization of HSCs to the bone marrow. Which receptors utilize this pathway in this context remains unknown. However, Gsα represents a previously unrecognized signaling pathway for homing and engraftment of HSCs to bone marrow. Pharmacologic activation of Gsα in HSC ex vivo prior to transplantation offers a potential method for enhancing stem cell engraftment efficiency.


2004 ◽  
Vol 13 (6) ◽  
pp. 677-684 ◽  
Author(s):  
Andreina Schoeberlein ◽  
Stephan Schatt ◽  
Carolyn Troeger ◽  
Daniel Surbek ◽  
Wolfgang Holzgreve ◽  
...  

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 502-502
Author(s):  
Marisa M. Juntilla ◽  
Vineet Patil ◽  
Rohan Joshi ◽  
Gary A. Koretzky

Abstract Murine hematopoietic stem cells (HSCs) rely on components of the Akt signaling pathway, such as FOXO family members and PTEN, for efficient self-renewal and continued survival. However, it is unknown whether Akt is also required for murine HSC function. We hypothesized that Akt would be required for HSC self-renewal, and that the absence of Akt would lead to hematopoietic failure resulting in developmental defects in multiple lineages. To address the effect of Akt loss in HSCs we used competitive and noncompetitive murine fetal liver-bone marrow chimeras. In short-term assays, Akt1−/−Akt2−/− fetal liver cells reconstituted the LSK compartment of an irradiated host as well or better than wildtype cells, although failed to generate wildtype levels of more differentiated cells in multiple lineages. When placed in a competitive environment, Akt1−/−Akt2−/− HSCs were outcompeted by wildtype HSCs in serial bone marrow transplant assays, indicating a requirement for Akt1 and Akt2 in the maintainance of long-term hematopoietic stem cells. Akt1−/−Akt2−/− LSKs tend to remain in the G0 phase of the cell cycle compared to wildtype LSKs, suggesting the failure in serial transplant assays may be due to increased quiesence in the absence of Akt1 and Akt2. Additionally, the intracellular content of reactive oxygen species (ROS) in HSCs is dependent on Akt signaling because Akt1−/−Akt2−/− HSCs have decreased ROS levels. Furthermore, pharmacologic augmentation of ROS in the absence of Akt1 and Akt2 results in an exit from quiescence and rescue of differentiation both in vivo and in vitro. Together, these data implicate Akt1 and Akt2 as critical regulators of long-term HSC function and suggest that defective ROS homeostasis may contribute to failed hematopoiesis.


Blood ◽  
1999 ◽  
Vol 93 (1) ◽  
pp. 80-86 ◽  
Author(s):  
Shai Erlich ◽  
Silvia R.P. Miranda ◽  
Jan W.M. Visser ◽  
Arie Dagan ◽  
Shimon Gatt ◽  
...  

The general utility of a novel, fluorescence-based procedure for assessing gene transfer and expression has been demonstrated using hematopoietic stem and progenitor cells. Lineage-depleted hematopoietic cells were isolated from the bone marrow or fetal livers of acid sphingomyelinase–deficient mice, and retrovirally transduced with amphotropic or ecotropic vectors encoding a normal acid sphingomyelinase (ASM) cDNA. Anti–c-Kit antibodies were then used to label stem- and progenitor-enriched cell populations, and the Bodipy fluorescence was analyzed in each group after incubation with a Bodipy-conjugated sphingomyelin. Only cells expressing the functional ASM (ie, transduced) could degrade the sphingomyelin, thereby reducing their Bodipy fluorescence as compared with nontransduced cells. The usefulness of this procedure for the in vitro assessment of gene transfer into hematopoietic stem cells was evaluated, as well as its ability to provide an enrichment of transduced stem cells in vivo. To show the value of this method for in vitro analysis, the effects of retroviral transduction using ecotropic versus amphotropic vectors, various growth factor combinations, and adult bone marrow versus fetal liver stem cells were assessed. The results of these studies confirmed the fact that ecotropic vectors were much more efficient at transducing murine stem cells than amphotropic vectors, and that among the three most commonly used growth factors (stem cell factor [SCF] and interleukins 3 and 6 [IL-3 and IL-6]), SCF had the most significant effect on the transduction of stem cells, whereas IL-6 had the most significant effect on progenitor cells. In addition, it was determined that fetal liver stem cells were only approximately twofold more “transducible” than stem cells from adult bone marrow. Transplantation of Bodipy-selected bone marrow cells into lethally irradiated mice showed that the number of spleen colony-forming units that were positive for the retroviral vector (as determined by polymerase chain reaction) was 76%, as compared with 32% in animals that were transplanted with cells that were nonselected. The methods described within this manuscript are particularly useful for evaluating hematopoietic stem cell gene transfer in vivo because the marker gene used in the procedure (ASM) encodes a naturally occurring mammalian enzyme that has no known adverse effects, and the fluorescent compound used for selection (Bodipy sphingomyelin) is removed from the cells before transplantation.


Sign in / Sign up

Export Citation Format

Share Document