Preconditioning with fetal cord blood facilitates engraftment of primary childhood T-cell acute lymphoblastic leukemia in immunodeficient mice

Blood ◽  
2001 ◽  
Vol 97 (10) ◽  
pp. 3218-3225 ◽  
Author(s):  
Deno P. Dialynas ◽  
Mi-Jeong Lee ◽  
Daniel P. Gold ◽  
Li-en Shao ◽  
Alice L. Yu ◽  
...  

Abstract Childhood T-cell acute lymphoblastic leukemia (T-ALL) is one of the most common childhood cancers. It is reported that preconditioning sublethally irradiated immunodeficient NOD/SCID (nonobese diabetic/X-linked severe combined immunodeficient) mice with human cord blood mononuclear cells facilitates the engraftment, expansion, and dissemination in these mice of primary T-ALL cells obtained from patients at the time of diagnosis. Cells recovered from mouse bone marrow or spleen resembled the original leukemia cells from patients with respect to surface lineage markers and T-cell receptor Vβ gene rearrangements. Moreover, the pattern of leukemia dissemination in mouse tissues, resulting in universally fatal leukemia, is reminiscent of the human clinical disease. In addition, the fidelity of the model to the human disease is documented with regard to the presence of morphologically identifiable human leukemia cells in mouse bone marrow and blood and the maintenance of leukemia-initiating capacity within the leukemia-engrafted mouse. Therefore, several lines of independent approaches are used to suggest that the engrafted cells are of human leukemia origin and are not derived from cord blood. The in vivo model described here should enable the study of the growth properties of primary T-ALL cells obtained from patients and should prove useful in evaluating the potential efficacy of therapeutic strategies directed toward T-ALL.

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 515-515
Author(s):  
Claire E. Pillsbury ◽  
Jairo A. Fonseca ◽  
Jodi Dougan ◽  
Hasan Abukharma ◽  
Gloria Gonzalez-Flamenco ◽  
...  

Abstract Immunotherapies have recently shown efficacy in treatment of aggressive, refractory pediatric B cell acute lymphoblastic leukemia (B-ALL), which remains one of the leading causes of cancer-related death in children. The immune evasion mechanisms of B-ALL are still being explored to discover new therapeutic targets and improve patient outcomes. Recent reports have implicated a role for the molecule Siglec-15 (Sig15) in regulating immune response in solid tumor-infiltrating macrophages. Our lab has found higher expression of SIGLEC15 at the RNA level in primary pediatric B-ALL as compared to healthy donor controls, as well as at the RNA and protein levels across a panel of B-ALL, T cell acute lymphoblastic leukemia (T-ALL), and diffuse large B cell lymphoma (DLBCL) cell lines compared to healthy donor PBMCs. Higher expression of SIGLEC15 in pediatric B-ALL samples from the TARGET database correlates with markers of PKC and NFκB activation known to drive B-ALL leukemogenesis, which we have demonstrated to regulate Sig15 RNA and protein expression in vitro. Knockout of Siglec15 expression in a BCR-ABL1 + murine model of B-ALL engrafted in immunocompetent and Rag1 -/- immunodeficient recipients resulted in leukemia clearance in immunocompetent, but not immunodeficient, recipients and 100% survival (Figure A, p=0.01 Sig15 KO into WT vs. Rag1 -/-). Further study indicates that Siglec15 expression on these leukemia cells suppresses T cell effector and memory population expansion at 7 days post-engraftment (Figure B) and correlates with higher levels of IL-10 and lower levels of CCL17 present in the bone marrow, representing a more immunosuppressive bone marrow milieu. These data suggest a prominent role for Sig15 in the suppression of adaptive immune response to B-ALL as well as other hematological malignancies. We have also reported for the first time the release of a soluble form of Sig15 (sSig15), which we have demonstrated to circulate at higher levels in the plasma of pediatric B-ALL patients compared to healthy donors (Figure C, ****P≤0.0001). Detection of this sSig15 negatively correlated with circulating levels of IL-12 and IL-1α/β (Figure D, depicting correlations of cytokines using Pearson's r), suggesting sSig15 levels correspond to a systemically immunosuppressive phenotype. Flow cytometry of fresh pediatric B ALL cells demonstrates expression of surface Sig15 in a subset of cases. Thus, Sig15 has the capacity to promote immunosuppressive effects at both marrow-localized and systemic levels. Together, these results suggest Siglec-15 is a novel, potent immunosuppressive molecule active in leukemia progression that may be targeted therapeutically to activate T lymphocytes against leukemia cells. Figure 1 Figure 1. Disclosures Abukharma: NextCure Inc.: Current Employment. Liu: NextCure: Current Employment, Current holder of stock options in a privately-held company.


2018 ◽  
Vol 110 (1) ◽  
pp. 256-268 ◽  
Author(s):  
Ashanti Concepción Uscanga‐Palomeque ◽  
Kenny Misael Calvillo‐Rodríguez ◽  
Luis Gómez‐Morales ◽  
Eva Lardé ◽  
Thomas Denèfle ◽  
...  

HemaSphere ◽  
2019 ◽  
Vol 3 (S1) ◽  
pp. 416
Author(s):  
C. Prieto ◽  
M. Broux ◽  
S. Demeyer ◽  
L. Albertí-Servera ◽  
K. Jacobs ◽  
...  

Blood ◽  
2014 ◽  
Vol 124 (20) ◽  
pp. 3092-3100 ◽  
Author(s):  
Sandrine Degryse ◽  
Charles E. de Bock ◽  
Luk Cox ◽  
Sofie Demeyer ◽  
Olga Gielen ◽  
...  

Key Points JAK3 pseudokinase mutants require JAK1 for their transforming potential. JAK3 mutants cause T-ALL in a mouse bone marrow transplant model and respond to tofacitinib, a JAK3-selective inhibitor.


2017 ◽  
Vol 1 (20) ◽  
pp. 1760-1772 ◽  
Author(s):  
Xavier Cahu ◽  
Julien Calvo ◽  
Sandrine Poglio ◽  
Nais Prade ◽  
Benoit Colsch ◽  
...  

Key Points BM niches differentially support T-ALL. BM niches differentially protect T-ALL cells from chemotherapy.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5149-5149
Author(s):  
Elena N. Parovichnikova ◽  
Vera V. Troitskaya ◽  
Andrey N. Sokolov ◽  
Larisa A. Kuzmina ◽  
Sergey Bondarenko ◽  
...  

Abstract Introduction T-cell acute lymphoblastic leukemia (T-ALL) and lymphoma (T-LBL) originate from the common T-cell precursors and are formally differentiated by bone marrow blast count with less than 25% considered as T-LBL. ALL treatment protocols are successfully applied with quite similar long-term results in both entities. Dose intense chemotherapy is proposed to be the best option. RALL is conducting a prospective multicenter trial in the treatment of Ph-negative adult ALL patients based on the opposite approach - non-intensive but non-interruptive treatment (NCT01193933). T-LBL pts were included in the study.So we decided to define whether the difference in response rate and long-term results exists in T-ALL and T-LBL patients treated according to RALL-2009 protocol. Patients and Methods The therapy was unified for all Ph-negative ALL pts, but in T-cell ALL/LBL autologous hematopoietic stem cell transplantation (auto-HSCT) after non-myeloablative BEAM conditioning was scheduled as late intensification (+3-4 mo of CR) followed by prolonged 2 years maintenance. From Jan 2009, till Jul 2016, 30 centers enrolled 107 T-ALL/LBL pts. Median age was 28 years (15-54 y), 34 f / 73 m; early T-cell (TI/II) phenotype was verified in 56 (52.3%), mature (T-IV) - in 10 (9.4%), thymic (TIII, CD1a+) ALL - in 41 pts (38.3%). T-lymphoblastic lymphoma (T-LBL= <25% b/m blasts) was diagnosed in 22 pts (20,5%). We divided the analyzed population into 3 groups: < 5% b/m blasts, with 5-24%, ≥25%. Pts' characteristics according to the b/m involvement are depicted in Table 1. Autologous HSCT was performed in 35, allogeneic-in 7 pts. The analysis was performed in July 2016. Results As it's shown in Table 1 the patients with T-LBL disregarding the % of blasts cells (<5% or 5-24%) have much less initial WBC and LDH levels, more frequent mediastinum involvement, less frequent CNS disease in comparison with T-ALL patients. There were no patients with pro-T-subtype (T1) T-LBL comparing with 42% of patients with pro-T-ALL. Mature T-subtype was slightly more frequent (4/22 vs 6/85) (p=0,1) in T-LBL. Total CR rate in 97 available for analysis patients was 87,6% (n=85), induction death was registered in 5,1% (n=5), resistance-in 7,2% (n=7). All induction deaths occurred in T-ALL patients, resistant cases were registered much more frequently (p=0,01) in T-LBL with less than 5% of blast cells than in T-ALL (3/10 vs 4/85). Only 35 of 85 (41,2%) CR pts underwent autologous HSCT due to logistics problems and refusals. Auto-HSCT was done at a median time of 6 mo from CR and pts proceeded to further maintenance. We compared 5-y disease-free survival (DFS) and probability of relapse (RP) in transplanted pts and those who survived in CR ≥ 6 months (land-mark) receiving only chemotherapy. This analysis was carried out in 2 cohorts of patients: T-LBL (<5%; 5-24%) and T-ALL (≥25%). Land-mark analysis demonstrated the essential benefit of auto-HSCT only for T-ALL patients: DFS from time of transplantation was 95% and from land-mark for chemotherapy group - 61% (p=0,005), RP-5% vs 30% (p=0,02). But in T-LBL pts there were no benefit of autologous HSCT over chemotherapy (DFS -100% vs 86%, RP-0% vs 14%, p=0,3). At 5 years overall survival (OS) for the whole T-ALL/T-LBL group constituted-66%, DFS-76%. There were no differences in OS (77% vs 66%, p=0,8) and in DFS (87% vs 74%, p=0,7) in T-LBL and T-ALL. Conclusions Our data demonstrate that non-intensive, but non-interruptive treatment approach is effective as in T-ALL so in T-LBL. T-LBL patients had no induction mortality but more frequently were reported as having resistant disease on RALL-2009 protocol. Auto-HSCT after BEAM conditioning followed by maintenance provided substantial benefit only for patients with T-ALL, but not T-LBL. Table 1 Clinical characteristics and treatment outcome in T-ALL and T-LBL patients Table 1. Clinical characteristics and treatment outcome in T-ALL and T-LBL patients Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document