Development of herpes simplex virus-1 amplicon–based immunotherapy for chronic lymphocytic leukemia

Blood ◽  
2001 ◽  
Vol 98 (2) ◽  
pp. 287-295 ◽  
Author(s):  
Khaled A. Tolba ◽  
William J. Bowers ◽  
Shannon P. Hilchey ◽  
Marc W. Halterman ◽  
Darlene F. Howard ◽  
...  

Herpes simplex virus (HSV)–based vectors have favorable biologic features for gene therapy of leukemia and lymphoma. These include high transduction efficiency, ability to infect postmitotic cells, and large packaging capacity. The usefulness of HSV amplicon vectors for the transduction of primary human B-cell chronic lymphocytic leukemia (CLL) was explored. Vectors were constructed encoding β-galactosidase (LacZ), CD80 (B7.1), or CD154 (CD40L) and were packaged using either a standard helper virus (HSVlac, HSVB7.1, and HSVCD40L) or a helper virus–free method (hf-HSVlac, hf-HSVB7.1, and hf-HSVCD40L). Both helper-containing and helper-free vector stocks were studied for their ability to transduce CLL cells, up-regulate costimulatory molecules, stimulate allogeneic T-cell proliferation in a mixed lymphocyte tumor reaction, and generate autologous cytotoxic T lymphocytes (CTLs). Although helper-containing and helper-free amplicon stocks were equivalent in their ability to transduce CLL cells, a vigorous T-cell proliferative response was obtained using cells transduced with hf-HSVB7.1 but not with HSVB7.1. CLL cells transduced with either HSVCD40L or hf-HSVCD40L were compared for their ability to up-regulate resident B7.1 and to function as T-cell stimulators. Significantly enhanced B7.1 expression in response to CD40L was observed using hf-HSVCD40L but not with HSVCD40L. CLL cells transduced with hf-HSVCD40L were also more effective at stimulating T-cell proliferation than those transduced with HSVCD40L stocks and were successful in stimulating autologous CTL activity. It is concluded that HSV amplicons are efficient vectors for gene therapy of hematologic malignancies and that helper virus–free HSV amplicon preparations are better suited for immunotherapy.

Blood ◽  
1986 ◽  
Vol 67 (2) ◽  
pp. 279-284 ◽  
Author(s):  
O Ayanlar-Batuman ◽  
E Ebert ◽  
SP Hauptman

Abstract The present studies were designed to investigate the mechanism(s) of the defective T cell proliferative response to various stimuli in patients with B cell chronic lymphocytic leukemia B-CLL. In 14 patients with advanced B-CLL (stage III or IV) we found the T cell response in the autologous (auto) and allogeneic (allo) mixed lymphocyte reaction (MLR) to be 35.7% and 30% of the controls, respectively. Proliferation in the MLR depends upon the production of and response to interleukin 2 (IL 2), a T cell growth factor. IL 2 production in eight B-CLL patients was 22% of the control. The response to IL 2 was measured by the increase in the T cell proliferation in the MLR with the addition of IL 2. T cell proliferation in both the auto and allo MLR of CLL patients was significantly lower than in the controls after the addition of IL 2. The proliferative response of normal T cells to stimulation by CLL B cells was 50% of the control. This latter response was increased to control levels when cultures were supplemented with exogenous IL 2, suggesting that CLL B cells could stimulate IL 2 receptor generation in normal T cells in an allo MLR, but not IL 2 production. The presence of IL 2 receptors on activated T cells was directly determined using anti- Tac, a monoclonal antibody with specificity for the IL 2 receptor. Of the mitogen- or MLR-activated T cells in CLL patients, 6% and 10%, respectively, expressed Tac antigen, whereas identically stimulated control T cells were 60% and 47% Tac+, respectively. Our findings suggest that T cells in B-CLL are defective in their recognition of self or foreign major histocompatibility antigens as demonstrated by their impaired responsiveness in the MLR. Thus, these cells are unable to produce IL 2 or generate IL 2 receptors.


2019 ◽  
Vol 94 (1) ◽  
pp. 111-113 ◽  
Author(s):  
Clívia Maria Moraes de Oliveira Carneiro ◽  
Maraya de Jesus Semblano Bittencourt ◽  
Andressa Bocalon dos Anjos ◽  
Fernanda Cecilia de Oliveira Costa Ataide Brito

Blood ◽  
1986 ◽  
Vol 67 (2) ◽  
pp. 279-284 ◽  
Author(s):  
O Ayanlar-Batuman ◽  
E Ebert ◽  
SP Hauptman

The present studies were designed to investigate the mechanism(s) of the defective T cell proliferative response to various stimuli in patients with B cell chronic lymphocytic leukemia B-CLL. In 14 patients with advanced B-CLL (stage III or IV) we found the T cell response in the autologous (auto) and allogeneic (allo) mixed lymphocyte reaction (MLR) to be 35.7% and 30% of the controls, respectively. Proliferation in the MLR depends upon the production of and response to interleukin 2 (IL 2), a T cell growth factor. IL 2 production in eight B-CLL patients was 22% of the control. The response to IL 2 was measured by the increase in the T cell proliferation in the MLR with the addition of IL 2. T cell proliferation in both the auto and allo MLR of CLL patients was significantly lower than in the controls after the addition of IL 2. The proliferative response of normal T cells to stimulation by CLL B cells was 50% of the control. This latter response was increased to control levels when cultures were supplemented with exogenous IL 2, suggesting that CLL B cells could stimulate IL 2 receptor generation in normal T cells in an allo MLR, but not IL 2 production. The presence of IL 2 receptors on activated T cells was directly determined using anti- Tac, a monoclonal antibody with specificity for the IL 2 receptor. Of the mitogen- or MLR-activated T cells in CLL patients, 6% and 10%, respectively, expressed Tac antigen, whereas identically stimulated control T cells were 60% and 47% Tac+, respectively. Our findings suggest that T cells in B-CLL are defective in their recognition of self or foreign major histocompatibility antigens as demonstrated by their impaired responsiveness in the MLR. Thus, these cells are unable to produce IL 2 or generate IL 2 receptors.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3481-3481 ◽  
Author(s):  
Lisa Hicks ◽  
Y. Shi ◽  
J. Mena ◽  
C. Hammond ◽  
Y. Tomic ◽  
...  

Abstract Background: Chronic lymphocytic leukemia (CLL) cells are weakly immunogenic, a property that may contribute to disease progression and inhibit the effectiveness of immunotherapies such as vaccines. Low surface expression of co-stimulatory molecules contributes to this poor immunogenicity. CLL cells express Toll-Like-Receptor-7 (TLR7), a powerful modulator of innate immunity. TLR7 agonists may be capable of enhancing the immunogenicity of CLL cells and thereby increasing T cell mediated killing of CLL. Methods: Circulating CLL cells were isolated directly from consenting patients by negative selection. TLR7 mRNA expression by CLL cells was demonstrated by RT-PCR. CLL cells were then incubated with S28690 (a TLR7 agonist), or with a negative control for 24–72h. Expression of the costimulatory molecules CD80, 83, 86, and 54 was determined by flow cytometry pre and post-incubation. Experiments were repeated in the presence of a NFkB inhibitor (dexamethasone), a p38 MAPK inhibitor, and a protein kinase C agonist (PDB). The effects of S28690 on phosphorylated-IkB and phosphorylated-STAT3 levels were measured by immunoblotting. The capacity of S28690-incubated CLL cells to stimulate T cell proliferation and killing was determined in mixed lymphocyte responses. Results: All tested CLL samples (n=20) expressed TLR7 mRNA, while Jurkat cells (T cell origin) did not. After incubation with S28690, CD80, 83, 86, and 54 surface expression increased on all CLL samples tested. The relative increase varied from 4 to 9-fold and was positively correlated with CD38 expression. NF-kB and p38 inhibitors decreased the effects of S28690 on co-stimulatory molecule expression while PDB amplified the effect. After incubation with S28690, IkB and STAT3 phosphorylation increased in CLL cells. S28690-incubated-CLL cells were able to stimulate moderate T cell proliferation, but did not increase T cell mediated killing of CLL cells. However, CLL cells incubated with both S28690 and PDB (a PKC agonist), exhibited much lower amounts of phosphorylated STAT3, triggered marked T cell proliferation, and stimulated T cell mediated killing of CLL cells. Conclusions: S28690 (a TLR7 agonist) causes increased expression of co-stimulatory molecules by CLL cells in vitro and transforms CLL cells into moderate stimulators of T cell proliferation. The effects of S28690 are synergistic with PKC agonists, potentially as a result of S28690-mediated NFkB activation and concurrent PKC-mediated inhibition of STAT3. These findings may find clinical application in immunotherapeutic approaches to CLL.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 614-614
Author(s):  
Gerardo Ferrer ◽  
Xiao-Jie Yan ◽  
Brendan Franca ◽  
Jacqueline C. Barrientos ◽  
Jonathan E. Kolitz ◽  
...  

Abstract Immune imbalance is a common characteristic of patients with chronic lymphocytic leukemia (CLL). This feature is shared with Eμ-TCL1 transgenic mice that, like CLL patients, exhibit an expansion of CD5+ B cells with associated non-B-cell defects. In patients and in mice, T-cell responses are often ineffective. This alteration is generally considered due to the direct effects of the leukemic cells. The expansion of myeloid derived suppressor cells (MDSCs), which play a major role in helping tumor cells escape immune surveillance by inhibiting T-cell responses, is promoted by many cancers. MDSCs are a heterogeneous population of cells that are subdivided into monocyte-like (m-MDSC) and granulocyte-like (g-MDSC) subsets, both in humans and mice. There we have investigated the extent that patients with CLL have expansions of MDSCs, what are their types and functions, and how these correlate with the Eμ-TCL1 mice model. Using flow cytometry on cryopreserved PBMCs, we found that the absolute numbers of MDSCs (HLA-DRlo/CD11b+/CD33+) in 49 untreated CLL patients were significantly higher than 15 healthy controls (HCs) (966 446 vs. 163 578 cells/ml, P<0.001). Moreover, we observed that the absolute numbers of MDSCs significantly correlated with CLL B-cell counts in the blood (P=0.005, Spearman r=0.423). Of note, the distribution between m-MDSCs (CD14+) and g-MDSCs (CD15+) was dramatically different, with CLL patients exhibiting significantly higher numbers and percentages of g-MDSCs than HCs (702 296 vs. 26 818 cells/ml, P<0.001; 50.89 vs. 16.98%, P<0.001).In line with these results, when we explored the MDSC populations (CD11b+/GR1+) in Eμ-TCL1 mice of 5-16 months of age with leukemia cell blood counts ranging from 0.1 to 100 x 106 cell/ml. This analysis indicated a positive correlation between MDSCs and leukemic CD19+ CD5+ cells (P=0.003; Spearman r=0.328). Furthermore, the dot-plot analysis of GR1 and CD11b showed three well defined cell populations: one monocytic (Ly6-C+) and two granulocytic (Ly6-G+ CD11blo and Ly6-G+ CD11bhi). As in patients, the g-MDSC population was larger than the m-MDSC population (884 100 vs. 454 700,P=0.016). However in this case, the m-MDSCs correlated with the numbers of circulating leukemic cells (P<0.001; Spearman r=0.463) and the g-MDSCs did not. The latter was the case even when they were subdivided into both CD11blo and CD11bhi subgroups. A similar pattern was observed when analyzing single cell suspensions from murine spleens. When we evaluated the ability of MDSCs to inhibit autologous T-cell proliferation in CLL patients (n=7), we observed a consistent reduction of proliferation only when co-culturing with g-MDSCs(P=0.034). In contrast, the effects of m-MDSCs on T-cell expansion were varied and insignificant statistically. In 5 CLL samples, we induced m-MDSCs (im-MDSCs) from purified CD33+ cells in vitro with GM-CSF, IL10, and IL6; the im-MDSCs effectively suppressed T-cell proliferation in 4 of 5 cases at an average inhibition of 33% (range: 10-79%). Thus, dysfunctional m-MDSC suppression was not inherent and functional suppression could be achieved by stimulation of CLL precursor cells. Similarly in 3 independent experiments performed with MDSCs from Eμ-TCL1 mice (12-14 months of age), we observed a reduction of in vitro proliferation with g-MDSCs (P=0.049) and not with m-MDSCs. In addition, for those Eμ-TCL1 animals for which sufficient sample was available, we subdivided the g-MDSC population into the two subpopulations based on CD11b density; the CD11blo subset present less nuclear segmentation and higher suppressive activity. In summary, absolute numbers of MDSCs in the blood of CLL patients and Eμ-TCL1 mice are elevated and correlate with the levels of expansion of the leukemia. The major subtype in both situations was g-MDSCs.These g-MDSCs were functionally competent suppressors, whereas m-MDSCs were impaired in this function. In CLL patients, this m-MDSC suppressor defect could be corrected by in vitro stimulation with growth factors that support monocyte differentiation. The high similarity between CLL patients and Eμ-TCL1 mice in relation to MDSC number and function suggest that an imbalance in g-MDC vs. m-MDSC function may affect CLL development and expansion, altering interactions with members of the microenvironment such as T cells. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document