Transient response to imatinib mesylate (STI571) in a patient with the ETV6-ABL t(9;12) translocation

Blood ◽  
2002 ◽  
Vol 99 (9) ◽  
pp. 3465-3467 ◽  
Author(s):  
Stephen G. O'Brien ◽  
Sara A. D. Vieira ◽  
Samantha Connors ◽  
Nick Bown ◽  
James Chang ◽  
...  

Abstract We report the transient response of a patient with theETV6-ABL fusion gene to imatinib mesylate (STI571). A 38-year-old man was referred with an erroneous diagnosis of Philadelphia-positive chronic myeloid leukemia in blastic transformation for treatment with the ABL tyrosine kinase inhibitor, STI571. Further investigation indicated that the patient in fact had acute myeloid leukemia; no evidence of the Philadelphia translocation or BCR-ABL was found using fluorescence in situ hybridization (FISH) or reverse transcription–polymerase chain reaction. Detailed FISH analysis identified a cryptic t(9;12) translocation, and molecular studies confirmed the presence of the ETV6-ABL fusion transcript. Because the patient was gravely ill at presentation, treatment was commenced immediately with STI571 monotherapy, resulting in considerable initial improvement. However within 10 days the patient's condition again deteriorated, and he required conventional chemotherapy. This case has implications for the design of future studies using STI571 in leukemias involving ABL-encoded fusion proteins other than BCR-ABL.

Blood ◽  
2002 ◽  
Vol 100 (3) ◽  
pp. 1068-1071 ◽  
Author(s):  
Russell R. Hoover ◽  
Francois-Xavier Mahon ◽  
Junia V. Melo ◽  
George Q. Daley

Abstract The development of chronic myeloid leukemia (CML) is dependent on the deregulated tyrosine kinase of the oncoprotein BCR-ABL. STI571 (imatinib mesylate), an abl tyrosine kinase inhibitor, has proven remarkably effective for the treatment of CML. However, resistance to STI571 because of enhanced expression or mutation of theBCR-ABL gene has been detected in patients. In the current study we show that the farnesyl transferase inhibitor (FTI) SCH66336 (lonafarnib) inhibits the proliferation of STI571-resistant BCR-ABL–positive cell lines and hematopoietic colony formation from peripheral blood samples of STI571-resistant patients with CML. Moreover, SCH66336 enhances STI571-induced apoptosis in STI571-sensitive cells and, in patients with STI571 resistance from gene amplification, cooperates with STI571 to induce apoptosis. Our data provide a rationale for combination clinical trials of STI571 and SCH66336 in CML patients and suggest that combination therapy may be effective in patients with STI571 resistance.


2016 ◽  
Vol 150 (3-4) ◽  
pp. 287-292
Author(s):  
Katsuya Yamamoto ◽  
Yosuke Minami ◽  
Kimikazu Yakushijin ◽  
Yu Mizutani ◽  
Yumiko Inui ◽  
...  

The t(11;20)(p15;q11∼12) translocation is a very rare but recurrent cytogenetic aberration that occurs in myelodysplastic syndrome/acute myeloid leukemia (MDS/AML). This translocation was shown to form a fusion gene between NUP98 at 11p15 and TOP1 at 20q12. Here, we describe a new case of de novo AML M2 with t(11;20) which was associated with another balanced translocation. An 81-year-old man was admitted to undergo salvage therapy for relapsed AML. G-banding and spectral karyotyping showed 46,XY,t(2;5)(q33;q31),t(11;20)(p15;q12)[20]. Expression of the NUP98/TOP1 fusion transcript was confirmed: NUP98 exon 13 was in-frame fused with TOP1 exon 8. The reciprocal TOP1/NUP98 fusion transcript was also detected: TOP1 exon 7 was fused with NUP98 exon 14. After achieving hematological complete remission, the karyotype converted to 46,XY,t(2;5)(q33;q31)[19]/46,sl,t(11;20)(p15;q12)[1]. FISH analysis demonstrated that the 5q31 breakpoint of t(2;5) was centromeric to EGR1. In all 10 cases described in the literature, the NUP98 exon 13/TOP1 exon 8 fusion transcript was expressed, indicating that it may be responsible for the pathogenesis of MDS/AML with t(11;20). On the other hand, the TOP1/NUP98 transcript was coexpressed in 4 cases of de novo AML, but not in 3 cases of therapy-related MDS. Thus, this reciprocal fusion may be associated with progression to AML.


2021 ◽  
Vol 14 (3) ◽  
pp. 1441-1446
Author(s):  
Zakaria Maat ◽  
Kamran Mushtaq ◽  
Mohamed A. Yassin

Dasatinib is a BCR-ABL tyrosine kinase inhibitor which was approved in 2006 for the treatment of adults diagnosed with Philadelphia chromosome-positive (Ph+) chronic myeloid leukemia (CML) in chronic phase (CP) and accelerated (myeloid or lymphoid blast) phase and CML with resistance or intolerance to prior therapy including imatinib and in adults with Ph+ acute lymphoblastic leukemia. Common adverse reactions (>15%) in patients diagnosed with CP-CML include myelosuppression, fluid retention, and diarrhea. We report a 34-year-old Filipino female patient who received dasatinib as upfront therapy for the treatment of CP-CML who experienced chronic diarrhea for 2 months, which progressed to colitis.


2021 ◽  
Vol 9 (41) ◽  
pp. 54-57
Author(s):  
Dhara Dave ◽  
John Kimbugwe ◽  
Randa Hazam ◽  
Saria Tasnim ◽  
Manish Patel

The BCR-ABL tyrosine kinase inhibitor dasatinib is a potent treatment for chronic myeloid leukemia (CML). However, it is associated with pulmonary toxicities. Commonly reported dasatinib related pulmonary toxicities include pleural effusion, lung parenchymal abnormalities, and pulmonary hypertension. Diffuse alveolar hemorrhage (DAH) during treatment with dasatinib is very rare. To the best of our knowledge there are only two cases reported. Here we report a 57-year-old Caucasian woman who developed acute hypoxic respiratory failure while on dasatinib for treatment of CML. She was diagnosed with DAH suspected to be secondary to dasatinib, after other common etiologies were ruled out. There was full recovery after stopping dasatinib and treatment with corticosteroids. Keywords: Dasatinib, pulmonary toxicity, diffuse alveolar hemorrhage, chronic myeloid leukemia


Blood ◽  
2003 ◽  
Vol 101 (2) ◽  
pp. 655-663 ◽  
Author(s):  
Christine Schuster ◽  
Karin Forster ◽  
Henning Dierks ◽  
Annika Elsässer ◽  
Gerhard Behre ◽  
...  

The clinical progression of chronic myeloid leukemia (CML) from chronic phase to blast crisis is characterized by the increasing failure of myeloid precursors to differentiate into mature granulocytes. This study was undertaken to investigate the influence of Bcr-Abl and of the small molecule Abl tyrosine–kinase inhibitor imatinib mesylate on granulocyte colony-stimulating factor (G-CSF)–induced neutrophilic differentiation. We show that differentiation of 32Dcl3 cells into mature granulocytes is accompanied by the increased expression of the antigens macrophage adhesion molecule–1 (Mac-1) and Gr-1, of the G-CSF receptor (G-CSFR), of myeloid transcription factors (CCAAT/enhancer-binding protein–α [C/EBPα], C/EBPε, and PU.1), and of the cyclin-dependent kinase inhibitor p27Kip1. In 32Dcl3 cells transfected with thebcr-abl gene (32DBcr-Abl), G-CSF did not trigger either granulocytic differentiation or the up-regulation of C/EBPα, C/EBPε, and the G-CSFR. This could be correlated to a defect in c-Myc down-regulation. In contrast, the up-regulation of PU.1 and p27Kip1 by G-CSF was not affected by Bcr-Abl. Importantly, incubation of 32DBcr-Ablwtcells with the kinase inhibitor imatinib mesylate prior to G-CSF stimulation completely neutralized the effects of Bcr-Abl on granulocytic differentiation and on C/EBPα and C/EBPε expression. Taken together, the results suggest that the Bcr-Abl kinase induces a reversible block of the granulocytic differentiation program in myeloid cells by disturbing regulation of hematopoietic transcription factors such as C/EBPα and C/EBPε.


2016 ◽  
Vol 38 (3) ◽  
pp. 195-197 ◽  
Author(s):  
S V Andreieva ◽  
K V Korets ◽  
O A Kyselova ◽  
O E Ruzhinska ◽  
I M Serbin

Aim: Genetic inborn along with acquired diseases arise due to the lesions in genome of multipotent hematopoietic stem cells. The aim was to study an influence of constitutional anomaly, Klinefelter syndrome, and additional structural rearrangements on the BCR-ABL tyrosine kinase inhibitor targeted therapy efficacy. Material and Methods: We describe a 32-year-old male patient with chronic myeloid leukemia (CML) who was detected to have sex chromosomal abnormality during evaluation for Philadelphia chromosome. Results: At diagnosis of CML, two clones were detected by standard cytogenetic investigation of bone marrow cells: 1) clone with translocation t(9;22)(q34;q11), with two sex X chromosomes and absence sex chromosome Y; 2) clone with t(9;22) and unbalanced t(Y;20)(q11;q13). Analysis of blast transformed lymphocytes from peripheral blood showed karyotype 47,XXY. Monitoring of targeted therapy with second generation inhibitor of BCR-ABL tyrosine kinase indicated a cytogenetic remission and absence of BCR-ABL1 fusion signals after 11 months. Conclusions: Absence of translocation t(9;22)(q34;q11) in blast transformed T-lymphocytes at diagnosis of CML evidences that this translocation may appear not only at the level of multipotent haemopoietic cell progenitors but also may have oligo lineage myeloid origin. Presence of additional structural chromosomal abnormality in the clone with t(9;22)(q34;q11) does not affect the efficacy of therapy with the use of second generation BCR-ABL tyrosine kinase inhibitor.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 4249-4249
Author(s):  
Seiichi Okabe ◽  
Tetsuzo Tauchi ◽  
Yuko Tanaka ◽  
Kazuma Ohyashiki

Abstract Introduction: Although ABL tyrosine kinase inhibitor (TKI), imatinib, nilotinib and dasatinib have demonstrated the potency against chronic myeloid leukemia (CML) and Philadelphia chromosome (Ph) positive acute lymphoblastic leukemia (Ph+ALL) patients, resistance to ABL TKI can develop in the many patients. It has already reported that ABL kinase domain mutations have been implicated in the pathogenesis of ABL TKI resistance, however, it is fully not known the molecular mechanism of drug resistance ABL TKIs. Therefore, new approach against ABL TKI resistant cells may improve the outcome of Ph-positive leukemia patients. Interleukin-1 (IL-1) is a proinflammatory cytokine and central mediator of innate immunity. IL-1β also controls essential cell responses. Because enhanced IL-1β signaling is reported in patients of hematological malignancies, IL-1β may be the promising therapeutic value in ABL TKI resistant CML patients. Materials and methods: In this study, we established ABL TKI-resistant in vitro cell line models (K562 imatinib-R, K562 nilotinib-R, K562 dasatinib-R, K562 ponatinib-R). We also investigated whether IL-1β was involved in ABL TKI resistant Ph-positive leukemia cells and cytokines were induced by IL-1β in human umbilical vein endothelial cells (HUVEC). Results: We analyzed the relationship of IL-1β signaling pathways and ABL TKI sensitivity by microarray gene expression data from the online Gene Expression Omnibus (GEO). IL-1β is related to imatinib sensitivity and resistant in CML patients from the public microarray datasets of GSE14671. We next examined ABL TKI resistant cell lines (K562 imatinib-R, K562 nilotinib-R, K562 dasatinib-R, K562 ponatinib-R) in this study. BCR-ABL point mutation was not found in ABL TKI resistant cells. BCR-ABL expression levels were not increased in ABL TKI resistant K562 cells. These cells were highly resistant to ABL TKIs compare to K562 cells (K562 imatinib-R: imatinib 2μM, nilotinib-R: nilotinib 2μM, dasatinib-R: dasatinib 100nM, ponatinib-R: ponatinib 50nM). We investigated gene expression profiles in cultured ABL TKI resistant K562 cells by DNA microarray. We found gene expression of IL-1β and IL-1β mediated signaling pathway was increased ABL TKI resistant K562 cells. IL-1β gene amplification was confirmed by RT-PCR analysis. Nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-kB) acts as a central mediator of inflammatory responses. Because bortezomib is a proteasome inhibitor whose anti-cancer action is partly mediated through inhibition of NF-κB, we examined the bortezomib in ABL TKI resistant cells. Combined treatment of ABL TKI resistant cells with ponatinib or imatinib and bortezomib caused more cytotoxicity than each drug alone. Caspase 3/7 activity and cellular cytotoxicity was also increased. ABL TKIs are also associated with vascular adverse events (VAEs) in CML, we next investigated the in vitro effects of ABL TKIs on cultured HUVEC. We found gene expression of IL-1β was increased after ABL TKI especially dasatinib and ponatinib treatment. IL-1β was increased in the cell culture supernatant after ABL TKIs treatment. In the immunoblot analysis, p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK) phosphorylation was increased by IL-1β in the time dependent manner. We also found that gene expression of IL-6, IL-8, intercellular adhesion molecule 1 (ICAM1) and monocyte chemotactic protein-1 (MCP-1) was enhanced by IL-1β stimulation. Conclusion: The IL-1β signaling pathway is involved in ABL TKI sensitivity and drug resistant in CML cells and plays a key role in cytokine production of the HUVEC. We also provide the promising clinical relevance as a candidate drug for treatment of ABL TKI resistant leukemia patients. Disclosures Ohyashiki: Asahikase: Research Funding; Taiho Pharmaceutical KK: Honoraria, Research Funding; Dainippon Sumitomo KK,: Honoraria, Research Funding; MSD,: Honoraria, Research Funding; Bristol Meyer Squibb KK,: Honoraria, Research Funding; Ono Pharmaceutical KK,: Honoraria, Research Funding; Celegene KK,: Honoraria, Research Funding; Pfizer KK,: Honoraria, Research Funding; Kyowakko Kirin KK,: Research Funding; Nihon-Seiyaku,: Research Funding; Eizai,: Research Funding; Chugai KK,: Honoraria, Research Funding; Takeda Pharmaceutical KK,: Honoraria, Research Funding; Asteras KK,: Research Funding; Jansen Pharma KK,: Research Funding; Nippon-shinyaku,: Honoraria, Research Funding; Novartis KK,: Honoraria, Research Funding.


Sign in / Sign up

Export Citation Format

Share Document