scholarly journals Alterations in platelet secretion differentially affect thrombosis and hemostasis

2018 ◽  
Vol 2 (17) ◽  
pp. 2187-2198 ◽  
Author(s):  
Smita Joshi ◽  
Meenakshi Banerjee ◽  
Jinchao Zhang ◽  
Akhil Kesaraju ◽  
Irina D. Pokrovskaya ◽  
...  

Key Points VAMP isoforms regulate the kinetics and extent of platelet granule exocytosis. Manipulating platelet sensitive factor attachment protein receptors alters granule secretion, which affects the hemostatic balance.

Blood ◽  
2012 ◽  
Vol 120 (12) ◽  
pp. 2493-2500 ◽  
Author(s):  
Rania Al Hawas ◽  
Qiansheng Ren ◽  
Shaojing Ye ◽  
Zubair A. Karim ◽  
Alexandra H. Filipovich ◽  
...  

Abstract Platelets are vital for hemostasis because they release their granule contents in response to vascular damage. Platelet exocytosis is mediated by soluble N-ethylmaleimide–sensitive factor attachment protein receptors (SNAREs), whose interactions are governed by regulators, eg, Sec/Munc18 proteins. These proteins chaperone syntaxin t-SNAREs and are required for exocytosis. Platelets contain 3 Munc18 isoforms: Munc18a, Munc18b, and Munc18c. We report that Munc18b is the major isoform and is required for platelet secretion. Familial hemophagocytic lymphohistiocytosis type 5 (FHL5) is caused by defects in the Munc18b/STXBP2 gene. We confirm a previous report showing that platelets from FHL5 patients have defective secretion. Serotonin, ADP/ATP, and platelet factor 4 release was profoundly affected in the 2 biallelic patients and partially in a heterozygous patient. Release of lysosomal contents was only affected in the biallelic platelets. Platelets from the FHL5 biallelic patients showed decreased Munc18b and syntaxin-11 levels were significantly reduced; other syntaxins were unaffected. Munc18b formed complexes with syntaxin-11, SNAP-23, and vesicle-associated membrane protein-8 in human platelets. Other potential secretion regulators, Munc13-4 and Rab27, were also found associated. These data demonstrate a key role for Munc18b, perhaps as a limiting factor, in platelet exocytosis and suggest that it regulates syntaxin-11.


2015 ◽  
Vol 26 (2) ◽  
pp. 305-315 ◽  
Author(s):  
Amy Orr ◽  
William Wickner ◽  
Scott F. Rusin ◽  
Arminja N. Kettenbach ◽  
Michael Zick

Fusion of yeast vacuoles requires the Rab GTPase Ypt7p, four SNAREs (soluble N-ethylmaleimide–sensitive factor attachment protein receptors), the SNARE disassembly chaperones Sec17p/Sec18p, vacuolar lipids, and the Rab-effector complex HOPS (homotypic fusion and vacuole protein sorting). Two HOPS subunits have direct affinity for Ypt7p. Although vacuolar fusion has been reconstituted with purified components, the functional relationships between individual lipids and Ypt7p:GTP have remained unclear. We now report that acidic lipids function with Ypt7p as coreceptors for HOPS, supporting membrane tethering and fusion. After phosphorylation by the vacuolar kinase Yck3p, phospho-HOPS needs both Ypt7p:GTP and acidic lipids to support fusion.


2003 ◽  
Vol 14 (3) ◽  
pp. 973-986 ◽  
Author(s):  
Annette M. Shewan ◽  
Ellen M. van Dam ◽  
Sally Martin ◽  
Tang Bor Luen ◽  
Wanjin Hong ◽  
...  

Insulin stimulates glucose transport in fat and muscle cells by triggering exocytosis of the glucose transporter GLUT4. To define the intracellular trafficking of GLUT4, we have studied the internalization of an epitope-tagged version of GLUT4 from the cell surface. GLUT4 rapidly traversed the endosomal system en route to a perinuclear location. This perinuclear GLUT4 compartment did not colocalize with endosomal markers (endosomal antigen 1 protein, transferrin) or TGN38, but showed significant overlap with the TGN target (t)-solubleN-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) Syntaxins 6 and 16. These results were confirmed by vesicle immunoisolation. Consistent with a role for Syntaxins 6 and 16 in GLUT4 trafficking we found that their expression was up-regulated significantly during adipocyte differentiation and insulin stimulated their movement to the cell surface. GLUT4 trafficking between endosomes and trans-Golgi network was regulated via an acidic targeting motif in the carboxy terminus of GLUT4, because a mutant lacking this motif was retained in endosomes. We conclude that GLUT4 is rapidly transported from the cell surface to a subdomain of thetrans-Golgi network that is enriched in the t-SNAREs Syntaxins 6 and 16 and that an acidic targeting motif in the C-terminal tail of GLUT4 plays an important role in this process.


2021 ◽  
Author(s):  
Luther J. Davis ◽  
Nicholas A. Bright ◽  
James R. Edgar ◽  
Michael D.J. Parkinson ◽  
Lena Wartosch ◽  
...  

To provide insights into the kiss-and-run and full fusion events resulting in endocytic delivery to lysosomes, we investigated conditions causing increased tethering and pore formation between late endocytic organelles in HeLa cells. Knockout of the SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) VAMP7 and VAMP8 showed, by electron microscopy, the accumulation of tethered LAMP (lysosome associated membrane protein)-carrier vesicles around multivesicular bodies, as well as the appearance of ‘hourglass’ profiles of late endocytic organelles attached by filamentous tethers, but did not prevent endocytic delivery to lysosomal hydrolases. Subsequent depletion of the SNARE YKT6 reduced this delivery, consistent with it compensating for the absence of VAMP7 and VAMP8. We also investigated filamentous tethering between multivesicular bodies and enlarged endolysosomes following depletion of CHMP6 (charged multi-vesicular body protein 6) and provide the first evidence that pore formation commences at the edge of tether arrays, with pore expansion required for full membrane fusion.


Blood ◽  
2010 ◽  
Vol 116 (6) ◽  
pp. 869-877 ◽  
Author(s):  
Qiansheng Ren ◽  
Christian Wimmer ◽  
Michael C. Chicka ◽  
Shaojing Ye ◽  
Yi Ren ◽  
...  

Abstract Activation-dependent platelet granule release is mediated by integral membrane proteins called soluble N-ethylmaleimide–sensitive fusion protein attachment protein receptors (SNAREs) and their regulators; however, the mechanisms for this process are ill-defined. To further characterize platelet secretion, we analyzed the function of platelets from Unc13dJinx mice. Platelets from these animals lack the putative vesicle priming factor, Munc13-4, and have a severe secretion defect. Release from dense granules was completely ablated and that from α-granules and lysosomes was severely compromised. Unc13dJinx platelets showed attenuated aggregation and, consequently, Unc13dJinx mice had prolonged tail-bleeding times. The secretion defect was not due to altered expression of SNAREs or SNARE regulators, defective granule biogenesis, or faulty platelet activation. The defective release could be rescued by adding recombinant Munc13-4 to permeabilized Unc13dJinx platelets. In wild-type mouse platelets, Munc13-4 levels were lower than those of SNAREs suggesting that Munc13-4 could be a limiting component of the platelets' secretory machinery. Consistently, Munc13-4 levels directly correlated with the extent of granule release from permeabilized platelets and from intact, heterozygous Unc13dJinx platelets. These data highlight the importance of Munc13-4 in platelets and indicate that it is a limiting factor required for platelet secretion and hemostasis.


2001 ◽  
Vol 114 (17) ◽  
pp. 3115-3124 ◽  
Author(s):  
Kazuo Kasai ◽  
Kimio Akagawa

Syntaxins are target-soluble N-ethylmaleimide-sensitive factor-attachment protein receptors (t-SNAREs) involved in docking and fusion of vesicles in exocytosis and endocytosis. Many syntaxin isoforms have been isolated, and each one displays a distinct intracellular localization pattern. However, the signals that drive the specific intracellular localization of syntaxins are poorly understood. In this study, we used indirect immunofluorescence analysis to examine the localization of syntaxin chimeras, each containing a syntaxin transmembrane domain fused to a cytoplasmic domain derived from a different syntaxin. We show that the cytoplasmic domains of syntaxins 5, 6, 7 and 8 have important effects on intracellular localization. We also demonstrate that the transmembrane domain of syntaxin 5 is sufficient to localize the chimera to the compartment expected for wild-type syntaxin 5. Additionally, we find that syntaxins 6, 7 and 8, but not syntaxin 5, are present at the plasma membrane, and that these syntaxins cycle through the plasma membrane by virtue of their cytoplasmic domains. Finally, we find that di-leucine-based motifs in the cytoplasmic domains of syntaxins 7 and 8 are necessary for their intracellular localization and trafficking via distinct transport pathways. Combined, these results suggest that both the cytoplasmic and the transmembrane domains play important roles in intracellular localization and trafficking of syntaxins.


Blood ◽  
2017 ◽  
Vol 129 (12) ◽  
pp. 1702-1706 ◽  
Author(s):  
Carsten Deppermann ◽  
Peter Kraft ◽  
Julia Volz ◽  
Michael K. Schuhmann ◽  
Sarah Beck ◽  
...  

Key Points Platelet granule content is dispensable for maintaining vascular integrity during skin and lung inflammation. In stark contrast, lack of platelet granule secretion causes increased mortality in experimental stroke due to intracranial hemorrhage.


Sign in / Sign up

Export Citation Format

Share Document