scholarly journals Mitochondrial localization and moderated activity are key to murine erythroid enucleation

2021 ◽  
Vol 5 (10) ◽  
pp. 2490-2504
Author(s):  
Raymond Liang ◽  
Vijay Menon ◽  
Jiajing Qiu ◽  
Tasleem Arif ◽  
Santosh Renuse ◽  
...  

Abstract Mammalian red blood cells (RBCs), which primarily contain hemoglobin, exemplify an elaborate maturation process, with the terminal steps of RBC generation involving extensive cellular remodeling. This encompasses alterations of cellular content through distinct stages of erythroblast maturation that result in the expulsion of the nucleus (enucleation) followed by the loss of mitochondria and all other organelles and a transition to anaerobic glycolysis. Whether there is any link between erythroid removal of the nucleus and the function of any other organelle, including mitochondria, remains unknown. Here we demonstrate that mitochondria are key to nuclear clearance. Using live and confocal microscopy and high-throughput single-cell imaging, we show that before nuclear polarization, mitochondria progressively move toward one side of maturing erythroblasts and aggregate near the nucleus as it extrudes from the cell, a prerequisite for enucleation to proceed. Although we found active mitochondrial respiration is required for nuclear expulsion, levels of mitochondrial activity identify distinct functional subpopulations, because terminally maturing erythroblasts with low relative to high mitochondrial membrane potential are at a later stage of maturation, contain greatly condensed nuclei with reduced open chromatin–associated acetylation histone marks, and exhibit higher enucleation rates. Lastly, to our surprise, we found that late-stage erythroblasts sustain mitochondrial metabolism and subsequent enucleation, primarily through pyruvate but independent of in situ glycolysis. These findings demonstrate the critical but unanticipated functions of mitochondria during the erythroblast enucleation process. They are also relevant to the in vitro production of RBCs as well as to disorders of the erythroid lineage.

Genetika ◽  
2004 ◽  
Vol 36 (3) ◽  
pp. 221-227
Author(s):  
Jelena Aleksic ◽  
Sasa Orlovic

Principles of the conservation of genetic resources of elms (Ulmus spp) do not differ fundamentally from the general principles accepted for the conservation of genetic resources of other common Noble Hardwoods. Efficient conservation can best be achieved through appropriate combination of in situ and ex situ methods, which have distinct advantages. Besides that, ex situ conservation is employed when emergency measures are needed for rare endangered populations and when populations are too small to be managed in situ (e.g. risks of genetic drift and inbreeding). The aim of our research is ex situ conservation of genetic resources of field elm {Ulmus minor Mill) and European white elm (Ulmus laevis Pall) through establishment of field genebanks. Sampling was conducted in one population of field elm and one population of white elm. Plant material (buds) from 8 trees of field elm and 10 trees of white elm was used for in vitro production of clones. Obtained clones will be used for establishment of field genebanks on the experimental estate of the Institute of Lowland Forestry and Environment.


Author(s):  
Dionis Minev ◽  
Richard Guerra ◽  
Jocelyn Y Kishi ◽  
Cory Smith ◽  
Elisha Krieg ◽  
...  

Abstract There is increasing demand for single-stranded DNA (ssDNA) of lengths >200 nucleotides (nt) in synthetic biology, biological imaging and bionanotechnology. Existing methods to produce high-purity long ssDNA face limitations in scalability, complexity of protocol steps and/or yield. We present a rapid, high-yielding and user-friendly method for in vitro production of high-purity ssDNA with lengths up to at least seven kilobases. Polymerase chain reaction (PCR) with a forward primer bearing a methanol-responsive polymer generates a tagged amplicon that enables selective precipitation of the modified strand under denaturing conditions. We demonstrate that ssDNA is recoverable in ∼40–50 min (time after PCR) with >70% yield with respect to the input PCR amplicon, or up to 70 pmol per 100 μl PCR reaction. We demonstrate that the recovered ssDNA can be used for CRISPR/Cas9 homology directed repair in human cells, DNA-origami folding and fluorescent in-situ hybridization.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 843-843
Author(s):  
Raymond Liang ◽  
Vijay Menon ◽  
Miao Lin ◽  
Roberta Nowak ◽  
Velia M. Fowler ◽  
...  

Abstract The terminal steps of red blood cell (RBC) generation involve an extensive cellular remodeling. This encompasses alterations of cellular content through five erythroblast stages that result in the expulsion of the nucleus (enucleation) followed by loss of mitochondria and all other organelles, and a transition to anaerobic glycolysis. Whether there is any link between the erythroid removal of the nucleus and the function of any other organelle including mitochondria remains unknown. Here we show that mitochondria are essential for nuclear clearance. We first demonstrate through high-throughput single-cell imaging and confocal microscopy that as mouse bone marrow erythroblasts mature (Gate 3: TER119+,CD44low, FSClow), mitochondria migrate to one end of the cell, aggregate and trail behind the nucleus as it extrudes from the cell, a prerequisite for enucleation to complete. We further show that mitochondrial localization behind the nucleus has similar kinetics as nuclear polarization. This process is also conserved in mouse fetal liver erythroid cells as well as in primary human CD34+-derived erythroblasts in culture. Notably, kinesin inhibition disrupts mitochondrial motility and localization and reduces significantly erythroblast enucleation rate in the absence of any impact on dynein or tubulin. These results suggest that mitochondria function as necessary chaperones during erythroblast enucleation. Furthermore, mitochondrial activity distinguishes erythroblasts on the verge of enucleation from others at the same erythroblast stage (Gate 3). We show that active mitochondrial respiration facilitates nuclear condensation and is required for nuclear extrusion. To our surprise however, metabolite profiling revealed that late-stage erythroblasts sustain mitochondrial metabolism and subsequent enucleation primarily through extracellular pyruvate but independently of glucose oxidation or anapleorotic reactions of amino acids. 13C-labeled metabolite tracing also confirmed pyruvate incorporation into mitochondria while glycolysis was minimal in orthochromatic erythroblasts. Thus, we provide evidence for the first time of a link between erythroid enucleation and mitochondrial metabolism. The process described establishes a model of mitochondrial compartmentalization within the cell for providing essential metabolites in a precise spatial and temporal manner. These findings are likely to improve the in vitro production of RBC and might be relevant to anemias of congenital mitochondrial disorders and aging. Disclosures No relevant conflicts of interest to declare.


2007 ◽  
Vol 35 (5) ◽  
pp. 962-965 ◽  
Author(s):  
M. He ◽  
M.J. Taussig

Cell-free transcription and translation provides an open, controllable environment for production of correctly folded, soluble proteins and allows the rapid generation of proteins from DNA without the need for cloning. Thus it is becoming an increasingly attractive alternative to conventional in vivo expression systems, especially when parallel expression of multiple proteins is required. Through novel design and exploitation, powerful cell-free technologies of ribosome display and protein in situ arrays have been developed for in vitro production and isolation of protein-binding molecules from large libraries. These technologies can be combined for rapid detection of protein interactions.


2019 ◽  
Author(s):  
Dionis Minev ◽  
Richard Guerra ◽  
Jocelyn Y. Kishi ◽  
Cory Smith ◽  
Elisha Krieg ◽  
...  

We present a rapid, scalable, user-friendly method for in vitro production of high-purity single-stranded DNA (ssDNA) ranging from 89–3315 nucleotides in length. PCR with a forward primer bearing a methanol-responsive polymer generates a tagged amplicon that enables selective precipitation of the modified strand under denaturing conditions. We demonstrate that the recovered ssDNA can be used for CRISPR/Cas9 homology-directed repair in human cells, DNA-origami folding, and fluorescent in situ hybridization.


1964 ◽  
Vol 47 (2) ◽  
pp. 306-313 ◽  
Author(s):  
Denis Gospodarowicz

ABSTRACT Incubation in vitro of rabbit follicles in separate experiments with dehydroepiandrosterone-14C (DHEA-14C), progesterone-14C and pregnenolone-3H in the presence of FSH gave the following results: 39 % of the radioactivity of DHEA-14C is converted to androstenedione and testosterone, while only 3 % of the radioactivity of either progesterone-14C or pregnenolone-3H is found in the androgen fraction. From the ratio of testosterone to androstenedione formed from the three precursors, the results are interpreted to mean that DHEA and pregnenolone, and not progesterone, are precursors of androgens in the follicle.


1984 ◽  
Vol 107 (3) ◽  
pp. 395-400 ◽  
Author(s):  
Itaru Kojima ◽  
Etsuro Ogata ◽  
Hiroshi Inano ◽  
Bun-ichi Tamaoki

Abstract. Incubation of 18-hydroxycorticosterone with the sonicated mitochondrial preparation of bovine adrenal glomerulosa tissue leads to the production of aldosterone, as measured by radioimmunoassay. The in vitro production of aldosterone from 18-hydroxycorticosterone requires both molecular oxygen and NADPH, and is inhibited by carbon monoxide. Cytochrome P-450 inhibitors such as metyrapone, SU 8000. SU 10603, SKF 525A, amphenone B and spironolactone decrease the biosynthesis of aldosterone from 18-hydroxycorticosterone. These results support the conclusion that the final reaction in aldosterone synthesis from 18-hydroxycorticosterone is catalyzed by an oxygenase, but not by 18-hydroxysteroid dehydrogenase. By the same preparation, the production of [3H]aldosterone but not [3H]18-hydroxycorticosterone from [1,2-3H ]corticosterone is decreased in a dose-dependent manner by addition of non-radioactive 18-hydroxycorticosterone.


Sign in / Sign up

Export Citation Format

Share Document