Differential expression of uPAR in cultured bronchial epithelial cells from asthma patients

Author(s):  
Sangita Bhatti ◽  
Michael Portelli ◽  
Mariel Slater ◽  
Dominick Shaw ◽  
Ian Sayers
2020 ◽  
pp. 2001286 ◽  
Author(s):  
Janette K. Burgess ◽  
Marnix R. Jonker ◽  
Marijn Berg ◽  
Nick T. H. ten Hacken ◽  
Kerstin B. Meyer ◽  
...  

Periostin may serve as a biomarker for type-2-mediated eosinophilic airway inflammation in asthma. We hypothesised that type-2 cytokine IL-13 induces airway epithelial expression of periostin, which in turn contributes to epithelial changes observed in asthma.We studied the effect of IL-13 on periostin expression in BEAS-2B and air-liquid interface (ALI)-differentiated primary bronchial epithelial cells (PBECs). Additionally, effects of recombinant human periostin on epithelial-to-mesenchymal transition (EMT) markers and mucin genes were assessed. In bronchial biopsies and induced sputum from asthma patients and healthy controls, we analysed periostin single cell gene expression and protein levels.IL-13 increased POSTN expression in both cell types, which was accompanied by EMT-related features in BEAS-2B. In ALI-differentiated PBECs, IL-13 increased periostin basolateral and apical release. Apical administration of periostin increased the expression of MMP9, MUC5B and MUC5AC. In bronchial biopsies, POSTN expression was mainly confined to basal epithelial cells, ionocytes, endothelial cells and fibroblasts, showing higher expression in basal epithelial cells from asthma patients versus controls. Higher protein levels of periostin, expressed in epithelial and subepithelial layers, was confirmed in bronchial biopsies from asthma patients compared to healthy controls. Although sputum periostin levels were not higher in asthma, levels correlated with eosinophil numbers and coughing up mucus.Periostin expression is increased by IL-13 in bronchial epithelial cells and higher in bronchial biopsies from asthma patients. This may have important consequences, as administration of periostin increased epithelial expression of mucin genes, supporting the relationship of periostin with type-2 mediated asthma and mucus secretion.


2021 ◽  
pp. 00522-2021
Author(s):  
Abilash Ravi ◽  
Saheli Chowdhury ◽  
Annemiek Dijkhuis ◽  
Barbara S. Dierdorp ◽  
Tamara Dekker ◽  
...  

BackgroundDefective translocation of the translational repressor TIAR (T-cell internal antigen receptor) in bronchial epithelial cells (BECs) from asthma patients underlies epithelial hyperresponsiveness, reflected by an exaggerated production of a select panel of inflammatory cytokines like CXCL-8, IL-6, G-CSF, CXCL-10, upon exposure to TNF and IL-17A. With this study we aimed to clarify whether epithelial hyperresponsiveness is a consistent finding, is changed upon in vivo exposure to rhinovirus-A16 (RV-A16) and, also applies to the bronchoconstrictor endothelin-1.MethodsBECs were obtained from asthma patients (n=18) and healthy individuals (n=11), 1 day before and 6 days post RV-A16 exposure. BECs were cultured and stimulated with TNF and IL-17A and inflammatory mediators were analysed. The bronchoalveolar lavage fluid (BALF) was obtained in parallel with BECs to correlate differential cell counts and inflammatory mediators with epithelial hyperresponsiveness.ResultsEpithelial hyperresponsiveness was confirmed in sequential samples and even increased in BECs from asthma patients after RV-A16 exposure, but not in BECs from healthy individuals. Endothelin-1 tended to increase in BECs from asthma patients collected after RV-A16 exposure, but not in BECs from healthy individuals. In vitro CXCL-8 and endothelin-1 production correlated. In vivo relevance for in vitro CXCL-8 and endothelin-1 production was shown by correlations with FEV1% predicted and CXCL-8 BALF levels.ConclusionEpithelial hyperresponsiveness is an intrinsic defect in BECs from asthma patients, which increases upon viral exposure, but not in BECs from healthy individuals. This epithelial hyperresponsiveness also applies to the bronchoconstrictor endothelin-1, which could be involved in airway obstruction.


2021 ◽  
Vol 8 ◽  
Author(s):  
Dian Chen ◽  
Wenliang Wu ◽  
Lingling Yi ◽  
Yuchen Feng ◽  
Chenli Chang ◽  
...  

Background: Asthma is one of the most prevalent chronic respiratory diseases worldwide. Bronchial epithelial cells play a critical role in the pathogenesis of asthma. Circular RNAs (circRNAs) act as microRNA (miRNA) sponges to regulate downstream gene expression. However, the role of epithelial circRNAs in asthma remains to be investigated. This study aims to explore the potential circRNA-miRNA-messenger RNA (mRNA) regulatory network in asthma by integrated analysis of publicly available microarray datasets.Methods: Five mRNA microarray datasets derived from bronchial brushing samples from asthma patients and control subjects were downloaded from the Gene Expression Omnibus (GEO) database. The robust rank aggregation (RRA) method was used to identify robust differentially expressed genes (DEGs) in bronchial epithelial cells between asthma patients and controls. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were used to annotate the functions of the DEGs. Protein-protein interaction (PPI) analysis was performed to identify hub genes. Three miRNA databases (Targetscan, miRDB, and miRWalk) were used to predict the miRNAs which potentially target the hub genes. A miRNA microarray dataset derived from bronchial brushings was used to validate the miRNA-mRNA relationships. Finally, a circRNA-miRNA-mRNA network was constructed via the ENCORI database.Results: A total of 127 robust DEGs in bronchial epithelial cells between steroid-naïve asthma patients (n = 272) and healthy controls (n = 165) were identified from five mRNA microarray datasets. Enrichment analyses showed that DEGs were mainly enriched in several biological processes related to asthma, including humoral immune response, salivary secretion, and IL-17 signaling pathway. Nineteen hub genes were identified and were used to construct a potential epithelial circRNA-miRNA-mRNA network. The top 10 competing endogenous RNAs were hsa_circ_0001585, hsa_circ_0078031, hsa_circ_0000552, hsa-miR-30a-3p, hsa-miR-30d-3p, KIT, CD69, ADRA2A, BPIFA1, and GGH.Conclusion: Our study reveals a potential role for epithelial circRNA-miRNA-mRNA network in the pathogenesis of asthma.


2016 ◽  
Vol 48 (3) ◽  
pp. 715-725 ◽  
Author(s):  
Emma Doran ◽  
David F. Choy ◽  
Aarti Shikotra ◽  
Claire A. Butler ◽  
Declan M. O'Rourke ◽  
...  

Severe asthma represents a major unmet clinical need. Eosinophilic inflammation persists in the airways of many patients with uncontrolled asthma, despite high-dose inhaled corticosteroid therapy. Suppressors of cytokine signalling (SOCS) are a family of molecules involved in the regulation of cytokine signalling via inhibition of the Janus kinase–signal transducers and activators of transcription pathway. We examined SOCS expression in the airways of asthma patients and investigated whether this is associated with persistent eosinophilia.Healthy controls, mild/moderate asthmatics and severe asthmatics were studied. Whole genome expression profiling, quantitative PCR and immunohistochemical analysis were used to examine expression of SOCS1, SOCS2 and SOCS3 in bronchial biopsies. Bronchial epithelial cells were utilised to examine the role of SOCS1 in regulating interleukin (IL)-13 signalling in vitro.SOCS1 gene expression was significantly lower in the airways of severe asthmatics compared with mild/moderate asthmatics, and was inversely associated with airway eosinophilia and other measures of T-helper type 2 (Th2) inflammation. Immunohistochemistry demonstrated SOCS1 was predominantly localised to the bronchial epithelium. SOCS1 overexpression inhibited IL-13-mediated chemokine ligand (CCL) 26 (eotaxin-3) mRNA expression in bronchial epithelial cells.Severe asthma patients with persistent airway eosinophilia and Th2 inflammation have reduced airway epithelial SOCS1 expression. SOCS1 inhibits epithelial IL-13 signalling, supporting its key role in regulating Th2-driven eosinophilia in severe asthma.


Sign in / Sign up

Export Citation Format

Share Document