stress mediators
Recently Published Documents


TOTAL DOCUMENTS

76
(FIVE YEARS 26)

H-INDEX

19
(FIVE YEARS 5)

Author(s):  
Abbas F. Almulla ◽  
Asara Vasupanrajit ◽  
Chavit Tunvirachaisakul ◽  
Hussein K. Al-Hakeim ◽  
Marco Solmi ◽  
...  

The tryptophan catabolite (TRYCAT) pathway is implicated in the pathophysiology of schizophrenia (SCZ) since the rate-limiting enzyme indoleamine-dioxygenase (IDO) may be induced by inflammatory and oxidative stress mediators. This systematic review searched PubMed, Web of Science, and Google Scholar for papers published from inception until August 2021 and meta-analyzed the association between SCZ and TRYCATs in the central nervous system (CNS) and peripheral blood. We included 61 studies comprising 2813 patients and 2948 healthy controls. In the CNS we found a significant (p<0.001) increase in the kynurenine/tryptophan (KYN/TRP) (standardized mean difference, SMD=0.769, 95% confidence interval, CI: 0.456; 1.082) and kynurenic acid (KA)/KYN+TRP (SMD=0.697, CI:0.478-0.917) ratios, KA (SMD=0.646, CI: 0.422; 0.909) and KYN (SMD=1.238; CI: 0.590; 1.886), while the 3OH-kynurenine (3HK) + KYN-3-monooxygenase (KMO)/KYN ratio was significantly reduced (SMD=-1.089, CI: -1.682; -0.496). There were significant differences between KYN/TRP, (KYN+KA)/TRP, (3HK+KMO)/KYN, KA, and KYN levels among the CNS and peripheral blood, and among serum and plasma KYN. The only useful peripheral marker of CNS TRYCATs findings was the increased KYN/TRP ratio in serum (SMD=0.211, CI: 0.056; 0.366, p=0.007), but not in plasma. There was no significant increase in a neurotoxic composite score based on KYN, 3HK, and picolinic, xanthurenic, and quinolinic acid. SCZ is accompanied by increased IDO activity in the CNS and serum, and reduced KMO activity and a shift towards KA production in the CNS. This CNS TRYCATs profile indicates neuroprotective, negative immunoregulatory and anti-inflammatory effects. Peripheral blood levels of TRYCATs are dissociated from CNS findings except for a modest increase in serum IDO activity.


2021 ◽  
Author(s):  
Abbas F. Almulla ◽  
Asara Vasupanrajit ◽  
Chavit Tunvirachaisakul ◽  
Hussein K. Al-Hakeim ◽  
Marco Solmi ◽  
...  

The tryptophan catabolite (TRYCAT) pathway is implicated in the pathophysiology of schizophrenia (SCZ) since the rate-limiting enzyme indoleamine-dioxygenase (IDO) may be induced by inflammatory and oxidative stress mediators. This systematic review searched PubMed, Web of Science, and Google Scholar for papers published from inception until August 2021 and meta-analyzed the association between SCZ and TRYCATs in the central nervous system (CNS) and peripheral blood. We included 61 studies comprising 2813 patients and 2948 healthy controls. In the CNS we found a significant (p<0.001) increase in the kynurenine/tryptophan (KYN/TRP) (standardized mean difference, SMD=0.769, 95% confidence interval, CI: 0.456; 1.082) and kynurenic acid (KA)/KYN+TRP (SMD=0.697, CI:0.478-0.917) ratios, KA (SMD=0.646, CI: 0.422; 0.909) and KYN (SMD=1.238; CI: 0.590; 1.886), while the 3OH-kynurenine (3HK) + KYN-3-monooxygenase (KMO)/KYN ratio was significantly reduced (SMD=-1.089, CI: -1.682; -0.496). There were significant differences between KYN/TRP, (KYN+KA)/TRP, (3HK+KMO)/KYN, KA, and KYN levels among the CNS and peripheral blood, and among serum and plasma KYN. The only useful peripheral marker of CNS TRYCATs findings was the increased KYN/TRP ratio in serum (SMD=0.211, CI: 0.056; 0.366, p=0.007), but not in plasma. There was no significant increase in a neurotoxic composite score based on KYN, 3HK, and picolinic, xanthurenic, and quinolinic acid. SCZ is accompanied by increased IDO activity in the CNS and serum, and reduced KMO activity and a shift towards KA production in the CNS. This CNS TRYCATs profile indicates neuroprotective, negative immunoregulatory and anti-inflammatory effects. Peripheral blood levels of TRYCATs are dissociated from CNS findings except for a modest increase in serum IDO activity.


2021 ◽  
Author(s):  
Fellipe da Silveira Bezerra de Mello ◽  
Alessandro L V Coradini ◽  
Marcelo Falsarella Carazzolle ◽  
Carla Maneira ◽  
Monique Furlan ◽  
...  

Current technology that enables bioethanol production from agricultural biomass imposes harsh conditions for Saccharomyces cerevisiae's metabolism. In this work, the genetic architecture of industrial bioethanol yeast strain SA-1 was evaluated. SA-1 segregant FMY097 was previously described as highly aldehyde resistant and here also as thermotolerant: two important traits for the second-generation industry. A Quantitative Trait Loci (QTL) mapping of 5-hydroxymethylfurfural (HMF) -resistant segregants of hybrid FMY097/BY4742 disclosed a region in chromosome II bearing alleles with uncommon non-synonymous (NS) single nucleotide polymorphisms (SNPs) in FMY097: MIX23, PKC1, SEA4, and SRO77. Allele swap to susceptible laboratory strain BY4742 revealed that SEA4FMY097 enhances robustness towards HMF, but the industrial fitness could not be fully recovered. The genetic network arising from the causative genes in the QTL window suggests that intracellular signaling TOR (Target of Rapamycin) and CWI (Cell Wall Integrity) pathways are regulators of this phenotype in FMY097. Because the QTL mapping did not result in one major allelic contribution to the evaluated trait, a background effect in FMY097's HMF resistance is expected. Quantification of NADPH - cofactor implied in endogenous aldehyde detoxification reactions - supports the former hypothesis, given its high availability in FMY097. Regarding thermotolerance, SEA4FMY097 grants BY4742 ability to grow in temperatures as high as 38 °C in liquid, while allele PKC1FMY097 allows growth up to 40 °C in solid medium. Both SEA4FMY097 and PKC1FMY097 encode rare NS SNPs, not found in other >1,013 S. cerevisiae. Altogether, these findings point towards crucial membrane and stress mediators for yeast robustness.


2021 ◽  
pp. 100946
Author(s):  
Natalie Thomas ◽  
Christopher W. Armstrong ◽  
Abdul-Rahman Hudaib ◽  
Jayashri Kulkarni ◽  
Caroline Gurvich

Author(s):  
Ali Esmail Al-Snafi

Medicinal plants can exert antidepressant activity by many mechanisms included neutralization of various stress mediators (regulate the activity of the hypothalamic- pituitary- adrenal axis and reduce CRF, and ACTH and corticosterone) [5], interaction with serotonergic systems (5-HT3, 5HT2A, 5-HT1A), noradrenergic (α1 and α2 receptors) and dopaminergic (D1 and D2) receptors [6],restoring monoamine transmitters and their receptors to normal limits in certain regions of the cortex, in addition to reducing of oxidative stress and amelioration of inflammatory mediators. The current review discussed the antidepressant activity of medicinal plants, with emphasis on their mechanisms of action.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0253543
Author(s):  
Navneet Suda ◽  
Jasmine Cendejas Hernandez ◽  
John Poulton ◽  
John P. Jones ◽  
Zacharoula Konsoula ◽  
...  

Based on several lines of evidence, numerous investigators have suggested that acetaminophen exposure during early development can induce neurological disorders. We had previously postulated that acetaminophen exposure early in life, if combined with antioxidants that prevent accumulation of NAPQI, the toxic metabolite of acetaminophen, might be innocuous. In this study, we administered acetaminophen at or below the currently recommended therapeutic dose to male laboratory rat pups aged 4–10 days. The antioxidants cysteine and mannitol were included to prevent accumulation of NAPQI. In addition, animals were exposed to a cassette of common stress factors: an inflammatory diet, psychological stress, antibiotics, and mock infections using killed bacteria. At age 37–49 days, observation during introduction to a novel conspecific revealed increased rearing behavior, an asocial activity, in animals treated with acetaminophen plus antioxidants, regardless of their exposure to oxidative stress factors (2-way ANOVA; P < 0.0001). This observation would suggest that the initial hypothesis is incorrect, and that oxidative stress mediators do not entirely eliminate the effects of acetaminophen on neurodevelopment. This study provides additional cause for caution when considering the use of acetaminophen in the pediatric population, and provides evidence that the effects of acetaminophen on neurodevelopment need to be considered both in the presence and in the absence of oxidative stress.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3660
Author(s):  
Rania M. Kamal ◽  
Manal M. Sabry ◽  
Zeinab Y. Aly ◽  
Mohamed S. Hifnawy

Unlike other widely known Aloe species used for treatment of rheumatoid arthritis, this species suffers from a lack of sufficient studies on its biological and chemical characters. This is what drove us to perform this work to evaluate the in vivo anti-arthritic potential of its leaf ethanolic extract. The in vivo anti-arthritic activity of the leaf ethanolic extract at 100 and 200 mg/kg/day b.wt. was evaluated alone and in combination with methotrexate (MTX) using complete Freund’s adjuvant. Serum levels of rheumatoid factor, anti-cyclic citrullinated peptide (anti-CCP), cytokines pro-inflammatory marker, inflammatory mediator serum levels, and oxidative stress mediators were analyzed, in addition to liver function. Orientin, isoorientin, β-sitosterol, its palmitate and its glucoside were isolated. The combined therapy of MTX and the leaf ethanolic extract (especially at 200 mg/kg b.wt.) group showed better activity compared to MTX alone. Moreover, the combined therapy provided additional benefits in lowering the liver toxicity by comparison to MTX alone. We concluded that a synergetic combination of the leaf ethanolic extract and MTX is beneficial in the management of rheumatoid arthritis with fewer side effects on liver function, as well as the possibility of the leaf extract to stand alone as an effective natural anti-arthritic agent.


Author(s):  
M. O Kolesnyk ◽  
N. G. Aleksieieva

End stage kidney disease (ESKD) causes accumulation of uremic toxins which cover a wide range of molecules classified according to molecular weight into small molecules (<500 Da), medium-sized molecules (500 Da – 60 kDa) and protein-bound toxins.Hemodialysis (HD) remains the main modality of renal replacement therapy in ESKD. Preferably used low-flow dialyzers provided removal of small soluble substances by diffusion, but not clearance of medium-sized molecules.The situation has changed somewhat with the advent of high-flow membranes (HF) and, later, online hemodiafiltration (ol-HDF) which significantly increased the clearance of small and medium-sized molecules due to a combination of diffusion and convection.There is some evidence confirming the hypothesis of insufficient clearance of uremic toxins with higher molecular weight by conventional HD which is the cause of high rates of comorbidity and mortality in patients with ESKD.Specific complications of HD are associated with the accumulation of medium-sized molecules, including myoglobin, leptin, prolactin, fibroblast growth factor (FGF) 23, free light chains kappa and lambda (FLC). Moreover, molecules bound to the proteins like homocysteine, oxidative stress mediators and inflammatory cytokines accelerate the development of atherosclerosis and, as a result, increase cardiovascular mortality.The introduction of MCO membranes into clinical practice has made it possible to develop a new concept of HD therapy called “expanded hemodialysis” (HDx).Thus, new technological solutions concerning the composition of the MCO dialysis membrane enabled to change the dialysis therapeutic targets and combine the capabilities of diffusion and convective transport processes to affect them. Preliminary results demonstrate positive effect of HDx on the triggers of a range of mechanisms of dialysis-associated comorbidity and mortality which can potentially significantly reduce their frequency and/or rate of progression.


2021 ◽  
pp. 096032712110028
Author(s):  
T Kiremitli ◽  
S Kiremitli ◽  
B Akselim ◽  
B Yilmaz ◽  
R Mammadov ◽  
...  

Methotrexate (MTX) has toxic effects on the uterus and ovaries via oxidative stress. Coenzyme Q10 (CoQ10) is an important component in electron transport in the mitochondria and an antioxidant in cellular metabolism through the inhibition of lipid peroxidation. The aim of this study was to investigate the preventive effects of CoQ10 on MTX-induced utero-ovarian damage and oxidative stress in rats. In this experimental study, 30 albino Wistar female rats were divided randomly into three groups. Once a day for a month, 10 mg/kg of CoQ10 was orally administered to the rats in the MTX+CoQ10 group, while the same volume of olive oil was administered orally to the other two groups. One hour thereafter, 20 mg/kg of MTX was injected intraperitoneally into the rats in the MTX and MTX+CoQ10 groups; the remaining group was the control. At the end of the month, biochemical and histopathologic examinations were performed on the extracted uteri and ovaries. In the uterine ovarian tissues of the animals in the MTX group, there was an increase in oxidative stress mediators and a decrease in antioxidant and anti-inflammatory mediators, but these trends were reversed in the MTX+CoQ10 group, demonstrating the antioxidant effects of CoQ10. MTX leads to oxidative stress-related ovarian and uterine injury, and CoQ10 may be useful for protecting ovarian and uterine tissue from such injury.


Marine Drugs ◽  
2021 ◽  
Vol 19 (3) ◽  
pp. 165
Author(s):  
Sajad Fakhri ◽  
Akram Yarmohammadi ◽  
Mostafa Yarmohammadi ◽  
Mohammad Hosein Farzaei ◽  
Javier Echeverria

In recent decades, several neuroprotective agents have been provided in combating neuronal dysfunctions; however, no effective treatment has been found towards the complete eradication of neurodegenerative diseases. From the pathophysiological point of view, growing studies are indicating a bidirectional relationship between gut and brain termed gut-brain axis in the context of health/disease. Revealing the gut-brain axis has survived new hopes in the prevention, management, and treatment of neurodegenerative diseases. Accordingly, introducing novel alternative therapies in regulating the gut-brain axis seems to be an emerging concept to pave the road in fighting neurodegenerative diseases. Growing studies have developed marine-derived natural products as hopeful candidates in a simultaneous targeting of gut-brain dysregulated mediators towards neuroprotection. Of marine natural products, carotenoids (e.g., fucoxanthin, and astaxanthin), phytosterols (e.g., fucosterol), polysaccharides (e.g., fucoidan, chitosan, alginate, and laminarin), macrolactins (e.g., macrolactin A), diterpenes (e.g., lobocrasol, excavatolide B, and crassumol E) and sesquiterpenes (e.g., zonarol) have shown to be promising candidates in modulating gut-brain axis. The aforementioned marine natural products are potential regulators of inflammatory, apoptotic, and oxidative stress mediators towards a bidirectional regulation of the gut-brain axis. The present study aims at describing the gut-brain axis, the importance of gut microbiota in neurological diseases, as well as the modulatory role of marine natural products towards neuroprotection.


Sign in / Sign up

Export Citation Format

Share Document