Components of dyspnoea during incremental exercise across the COPD continuum

Author(s):  
Devin Phillips ◽  
J Alberto Neder ◽  
Amany Elbehairy ◽  
Kathryn Milne ◽  
Matthew James ◽  
...  
Keyword(s):  
1999 ◽  
Vol 20 (02) ◽  
pp. 71-77
Author(s):  
W. Ament ◽  
J. Huizenga ◽  
E. Kort ◽  
T. Mark ◽  
R. Grevink ◽  
...  

1994 ◽  
Vol 77 (4) ◽  
pp. 1907-1912 ◽  
Author(s):  
D. A. Schneider ◽  
M. T. McEniery ◽  
C. Solomon ◽  
J. Jurimae ◽  
M. S. Wehr

The purpose of the present study was to examine the relationship of plasma potassium (K+) and minute ventilation (VE) during incremental cycling (20 W/2 min) under conditions of beta-adrenergic blockade (80 mg of propranolol) and placebo in six untrained male subjects. No significant differences existed between treatments in O2 uptake, CO2 production, blood lactate, pH, or VE during the submaximal work stages of incremental exercise common to both treatments (20–220 W). During exercise with beta-blockade, plasma K+ concentrations were found to be significantly elevated compared with control levels at every work stage except 20 W. Significant positive correlations between VE and plasma K+ were found during both beta-blockade (r = 0.99) and control conditions (r = 1.00). Although the high correlation between VE and K+ was not altered with beta-blockade, propranolol treatment resulted in a significant reduction in the slope of this relationship during incremental exercise (P < 0.01). These findings suggest that 1) beta-blockade decreases the VE-K+ relationship observed during exercise and 2) K+ stimulation of muscle afferents is not an important signal in the control of exercise ventilation.


2011 ◽  
Vol 43 (Suppl 1) ◽  
pp. 646
Author(s):  
Erika Iwamoto ◽  
Keisho Katayama ◽  
Yoshiharu Oshida ◽  
Koji Ishida

Author(s):  
Hanapi M. Johari ◽  
Brinnell A. Caszo ◽  
Victor F. Knight ◽  
Steven A. Lumley ◽  
Aminuddin K. Abdul Hamid ◽  
...  

2020 ◽  
Vol 16 (5) ◽  
pp. 387-394
Author(s):  
J.C. Alves ◽  
A. Santos ◽  
P. Jorge ◽  
M.P. Lafuente

This study aimed to evaluate the physiological, haematological and biochemical changes during a treadmill incremental exercise test (IET). Animals were submitted to five stages of 6 min each, at 6, 7, 8, 9 and 10 mph, at an inclination of 5%. Blood samples were collected at rest (T0), immediately after exercise (T5) and after a 20 min rest period (T6), to determine complete blood count, urea, creatinine, creatine kinase, aspartate aminotransferase, alanine aminotransferase, lactate dehydrogenase, total plasma protein, albumin, alkaline phosphatase (AP), cholesterol, triglycerides (Trig), Ca2+, Na+, K+ and Cl-. Blood lactate (BL), heart rate (HR), rectal temperature (RT) and glycaemia were measured at rest (T0), after each stage (T1-T5) and after the rest period (T6). Variations were recorded between T0 and T5 in red blood cells, haemoglobin, AP, Na+, K+ (P<0.01), Trig (P<0.05), Ca2+ and Cl- (P<0.02). Differences were observed in BL at T5 (P<0.02) and T6 (P<0.02), RT at T2-T6 (P<0.01), HR at T3-T5 (P<0.01) and glycaemia at T2-T4 (P<0.01) and T5 (P<0.05). This study is a novel description of the shifts of physical fit police working dogs during this IET protocol.


Sign in / Sign up

Export Citation Format

Share Document