Cigarette smoke exposure disrupts the molecular regulation of mitochondrial metabolism in human bronchial and alveolar epithelial cells

Author(s):  
C B Tulen ◽  
C Schiffers ◽  
P Leermakers ◽  
N Reynaert ◽  
M Dentener ◽  
...  
2012 ◽  
Vol 303 (9) ◽  
pp. L814-L823 ◽  
Author(s):  
Sabine H. van Rijt ◽  
Ilona E. Keller ◽  
Gerrit John ◽  
Kathrin Kohse ◽  
Ali Ö. Yildirim ◽  
...  

Cigarette smoke mediates DNA damage, lipid peroxidation, and modification and misfolding of proteins, thereby inducing severe cellular damage. The ubiquitin proteasome system serves as the major disposal system for modified and misfolded proteins and is thus essential for proper cellular function. Its role in cigarette smoke-induced cell damage, however, is largely unknown. We hypothesized that the ubiquitin-proteasome system is involved in the degradation of cigarette smoke-damaged proteins and that cigarette smoke exposure impairs the proteasome itself. Here, we show that treatment of human alveolar epithelial cells with cigarette smoke extract (CSE) induced time- and dose-dependent cell death, a rise in intracellular reactive oxygen species, and increased levels of carbonylated and polyubiquitinated proteins. While high doses of CSE severely impaired all three proteasomal activities, low CSE concentrations significantly inhibited only the trypsin-like activity of the proteasome in alveolar and bronchial epithelial cells. Moreover, acute exposure of mice to cigarette smoke significantly impaired the trypsin-like activity by 25% in the lungs. Reduced proteasome activity was not due to transcriptional regulation of the proteasome. Notably, cigarette smoke exposure induced accumulation of polyubiquitinated proteins in the soluble and insoluble protein fraction of the lung. We show for the first time that acute exposure to cigarette smoke directly impairs proteasome activity in the lungs of mice and in human epithelial cells at low doses without affecting proteasome expression. Our results indicate that defective proteasomal protein quality control may exacerbate the detrimental effects of cigarette smoke in the lung.


Pneumologie ◽  
2014 ◽  
Vol 68 (06) ◽  
Author(s):  
S Seehase ◽  
B Baron-Luehr ◽  
C Kugler ◽  
E Vollmer ◽  
T Goldmann

2021 ◽  
Vol 49 (2) ◽  
pp. 030006052098604
Author(s):  
Dong Yuan ◽  
Yuanshun Liu ◽  
Mengyu Li ◽  
Hongbin Zhou ◽  
Liming Cao ◽  
...  

Objective The primary aim of our study was to explore the mechanisms through which long non-coding RNA (lncRNA)-mediated sirtuin-1 (SIRT1) signaling regulates type II alveolar epithelial cell (AECII) senescence induced by a cigarette smoke-media suspension (CSM). Methods Pharmacological SIRT1 activation was induced using SRT2104 and senescence-associated lncRNA 1 (SAL-RNA1) was overexpressed. The expression of SIRT1, FOXO3a, p53, p21, MMP-9, and TIMP-1 in different groups was detected by qRT-PCR and Western blotting; the activity of SA-β gal was detected by staining; the binding of SIRT1 to FOXO3a and p53 gene transcription promoters was detected by Chip. Results We found that CSM increased AECII senescence, while SAL-RNA1 overexpression and SIRT1 activation significantly decreased levels of AECII senescence induced by CSM. Using chromatin immunoprecipitation, we found that SIRT1 bound differentially to transcriptional complexes on the FOXO3a and p53 promoters. Conclusion Our results suggested that lncRNA-SAL1-mediated SIRT1 signaling reduces senescence of AECIIs induced by CSM. These findings suggest a new therapeutic target to limit the irreversible apoptosis of lung epithelial cells in COPD patients.


2014 ◽  
Vol 307 (11) ◽  
pp. L895-L907 ◽  
Author(s):  
Korbinian Ballweg ◽  
Kathrin Mutze ◽  
Melanie Königshoff ◽  
Oliver Eickelberg ◽  
Silke Meiners

Cigarette smoke is the main risk factor for chronic obstructive pulmonary disease (COPD). Exposure of cells to cigarette smoke induces an initial adaptive cellular stress response involving increased oxidative stress and induction of inflammatory signaling pathways. Exposure of mitochondria to cellular stress alters their fusion/fission dynamics. Whereas mild stress induces a prosurvival response termed stress-induced mitochondrial hyperfusion, severe stress results in mitochondrial fragmentation and mitophagy. In the present study, we analyzed the mitochondrial response to mild and nontoxic doses of cigarette smoke extract (CSE) in alveolar epithelial cells. We characterized mitochondrial morphology, expression of mitochondrial fusion and fission genes, markers of mitochondrial proteostasis, as well as mitochondrial functions such as membrane potential and oxygen consumption. Murine lung epithelial (MLE)12 and primary mouse alveolar epithelial cells revealed pronounced mitochondrial hyperfusion upon treatment with CSE, accompanied by increased expression of the mitochondrial fusion protein mitofusin 2 and increased metabolic activity. We did not observe any alterations in mitochondrial proteostasis, i.e., induction of the mitochondrial unfolded protein response or mitophagy. Therefore, our data indicate an adaptive prosurvival response of mitochondria of alveolar epithelial cells to nontoxic concentrations of CSE. A hyperfused mitochondrial network, however, renders the cell more vulnerable to additional stress, such as sustained cigarette smoke exposure. As such, cigarette smoke-induced mitochondrial hyperfusion, although part of a beneficial adaptive stress response in the first place, may contribute to the pathogenesis of COPD.


Sign in / Sign up

Export Citation Format

Share Document