scholarly journals Functional characterization of the Saccharomyces cerevisiae protein Chl1 reveals the role of sister chromatid cohesion in the maintenance of spindle length during S-phase arrest

BMC Genetics ◽  
2011 ◽  
Vol 12 (1) ◽  
pp. 83 ◽  
Author(s):  
Suparna Laha ◽  
Shankar P Das ◽  
Sujata Hajra ◽  
Kaustuv Sanyal ◽  
Pratima Sinha
2006 ◽  
Vol 23 (5) ◽  
pp. 723-732 ◽  
Author(s):  
George-Lucian Moldovan ◽  
Boris Pfander ◽  
Stefan Jentsch

2007 ◽  
Vol 282 (52) ◽  
pp. 37805-37814 ◽  
Author(s):  
Safia Thaminy ◽  
Benjamin Newcomb ◽  
Jessica Kim ◽  
Tonibelle Gatbonton ◽  
Eric Foss ◽  
...  

2006 ◽  
Vol 17 (2) ◽  
pp. 658-666 ◽  
Author(s):  
Christopher M. Yellman ◽  
Daniel J. Burke

Cdc55, a B-type regulatory subunit of protein phosphatase 2A, has been implicated in mitotic spindle checkpoint activity and maintenance of sister chromatid cohesion during metaphase. The spindle checkpoint is composed of two independent pathways, one leading to inhibition of the metaphase-to-anaphase transition by checkpoint proteins, including Mad2, and the other to inhibition of mitotic exit by Bub2. We show that Cdc55 is a negative regulator of mitotic exit. A cdc55 mutant, like a bub2 mutant, prematurely releases Cdc14 phosphatase from the nucleolus during spindle checkpoint activation, and premature exit from mitosis indirectly leads to loss of sister chromatid cohesion and inviability in nocodazole. The role of Cdc55 is separable from Bub2 and inhibits release of Cdc14 through a mechanism independent of the known negative regulators of mitotic exit. Epistasis experiments indicate Cdc55 acts either downstream or independent of the mitotic exit network kinase Cdc15. Interestingly, the B-type cyclin Clb2 is partially stable during premature activation of mitotic exit in a cdc55 mutant, indicating mitotic exit is incomplete.


2003 ◽  
Vol 23 (8) ◽  
pp. 2733-2748 ◽  
Author(s):  
Shaune Edwards ◽  
Caroline M. Li ◽  
Daniel L. Levy ◽  
Jessica Brown ◽  
Peter M. Snow ◽  
...  

ABSTRACT The large subunit of Saccharomyces cerevisiae DNA polymerase ε, Pol2, comprises two essential functions. The N terminus has essential DNA polymerase activity. The C terminus is also essential, but its function is unknown. We report here that the C-terminal domain of Pol2 interacts with polymerase σ (Pol σ), a recently identified, essential nuclear nucleotidyl transferase encoded by two redundant genes, TRF4 and TRF5. This interaction is functional, since Pol σ stimulates the polymerase activity of the Pol ε holoenzyme significantly. Since Trf4 is required for sister chromatid cohesion as well as for completion of S phase and repair, the interaction suggested that Pol ε, like Pol σ, might form a link between the replication apparatus and sister chromatid cohesion and/or repair machinery. We present evidence that pol2 mutants are defective in sister chromatid cohesion. In addition, Pol2 interacts with SMC1, a subunit of the cohesin complex, and with ECO1/CTF7, required for establishing sister chromatid cohesion; and pol2 mutations act synergistically with smc1 and scc1. We also show that trf5Δ mutants, like trf4Δ mutants, are defective in DNA repair and sister chromatid cohesion.


2000 ◽  
Vol 20 (10) ◽  
pp. 3459-3469 ◽  
Author(s):  
Koichi Tanaka ◽  
Toshihiro Yonekawa ◽  
Yosuke Kawasaki ◽  
Mihoko Kai ◽  
Kanji Furuya ◽  
...  

2020 ◽  
Author(s):  
James E Collier ◽  
Byung-Gil Lee ◽  
Maurici B Roig ◽  
Stanislav Yatskevich ◽  
Naomi J Petela ◽  
...  

SUMMARYIn addition to extruding DNA loops, cohesin entraps within its SMC-kleisin ring (S-K) individual DNAs during G1 and sister DNAs during S-phase. All three activities require related hook-shaped proteins called Scc2 and Scc3. Using thiol-specific crosslinking we provide rigorous proof of entrapment activity in vitro. Scc2 alone promotes entrapment of DNAs in the E-S and E-K compartments, between ATP-bound engaged heads and the SMC hinge and associated kleisin, respectively. This does not require ATP hydrolysis nor is it accompanied by entrapment within S-K rings, which is a slower process requiring Scc3. Cryo-EM reveals that DNAs transported into E-S/E-K compartments are “clamped” in a sub-compartment created by Scc2’s association with engaged heads whose coiled coils are folded around their elbow. We suggest that clamping may be a recurrent feature of cohesin complexes active in loop extrusion and that this conformation precedes the S-K entrapment required for sister chromatid cohesion.


2008 ◽  
Vol 31 (1) ◽  
pp. 143-151 ◽  
Author(s):  
Jinglan Zhang ◽  
Xiaomin Shi ◽  
Yehua Li ◽  
Beom-Jun Kim ◽  
Junling Jia ◽  
...  

2001 ◽  
Vol 21 (9) ◽  
pp. 3144-3158 ◽  
Author(s):  
Joseph S. Hanna ◽  
Evgueny S. Kroll ◽  
Victoria Lundblad ◽  
Forrest A. Spencer

ABSTRACT CTF4 and CTF18 are required for high-fidelity chromosome segregation. Both exhibit genetic and physical ties to replication fork constituents. We find that absence of eitherCTF4 or CTF18 causes sister chromatid cohesion failure and leads to a preanaphase accumulation of cells that depends on the spindle assembly checkpoint. The physical and genetic interactions between CTF4, CTF18, and core components of replication fork complexes observed in this study and others suggest that both gene products act in association with the replication fork to facilitate sister chromatid cohesion. We find that Ctf18p, anRFC1-like protein, directly interacts with Rfc2p, Rfc3p, Rfc4p, and Rfc5p. However, Ctf18p is not a component of biochemically purified proliferating cell nuclear antigen loading RF-C, suggesting the presence of a discrete complex containing Ctf18p, Rfc2p, Rfc3p, Rfc4p, and Rfc5p. Recent identification and characterization of the budding yeast polymerase κ, encoded by TRF4, strongly supports a hypothesis that the DNA replication machinery is required for proper sister chromatid cohesion. Analogous to the polymerase switching role of the bacterial and human RF-C complexes, we propose that budding yeast RF-CCTF18 may be involved in a polymerase switch event that facilities sister chromatid cohesion. The requirement for CTF4 and CTF18 in robust cohesion identifies novel roles for replication accessory proteins in this process.


Sign in / Sign up

Export Citation Format

Share Document