scholarly journals Integrated vector management: a critical strategy for combating vector-borne diseases in South Sudan

2013 ◽  
Vol 12 (1) ◽  
Author(s):  
Emmanuel Chanda ◽  
John M Govere ◽  
Michael B Macdonald ◽  
Richard L Lako ◽  
Ubydul Haque ◽  
...  
2018 ◽  
Vol 7 (1) ◽  
Author(s):  
Jorge Marcos-Marcos ◽  
Antonio Olry de Labry-Lima ◽  
Silvia Toro-Cardenas ◽  
Marina Lacasaña ◽  
Stéphanie Degroote ◽  
...  

2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Shadreck Sande ◽  
Moses Zimba ◽  
David Nyasvisvo ◽  
Munyaradzi Mukuzunga ◽  
Emmanuel H. Kooma ◽  
...  

Abstract Background This paper outlines Zimbabwe’s potential readiness in harnessing integrated vector management (IVM) strategy for enhanced control of vector-borne diseases. The objective is to provide guidance for the country in the implementation of the national IVM strategy in order to make improvements required in thematic areas of need. The paper also assesses the existing opportunities and gaps to promote and adopt the approach as a national policy. Main text Despite recent gains in combating vector-borne diseases, especially malaria, management of vector control programmes still remains insecticide-based and vertical in nature. Therefore, concerns have been raised on whether the current long-standing conventional vector control strategy still remains with sufficient action to continue to break the transmission cycle to the levels of elimination. This is so, given the continuous dwindling resources for vector control, changes in vector behaviour, the emergence of resistance to medicines and insecticides, climate change, environmental degradation, as well as diversity in ecology, breeding habitats, and community habits. Cognizant of all that, elements of a surveillance-driven IVM approach are rapidly needed to move vector control interventions a step further. These include advocacy, policy formulation, capacity building, public and private partnerships, community engagement, and increasingly basing decisions on local evidence. Understanding the existing opportunities and gaps, and the recognition that some elements of IVM are already imbedded in the current health programmes is important to encourage stakeholders to promptly support its implementation. Leveraging on the existing opportunities, combined with sufficient advocacy, IVM could easily be accepted by the Zimbabwe government as part of a wider integrated disease management strategy. The strategy could represent an excellent breakthrough to establish much needed intra and inter-sectoral dialogue, and coordination for improved vector-borne disease prevention. Conclusions After synthesis of the opportunities and challenges clearly presented, it was concluded that it is imperative for Zimbabwe to adopt and implement IVM strategy that is informed by work already done, while addressing the bottlenecks. The significance of refocusing for improved disease prevention that has the potential to accomplish elimination of not only malaria but all vector borne diseases much earlier than anticipated under the existing vector control system is underscored.


Author(s):  
Francisco Collantes ◽  
Manuel José Méndez ◽  
Caridad Soto-Castejón ◽  
Eva María Muelas

Background: Due to the Spanish legal framework, the national program for vector-borne diseases results from the agreement between national and regional governments, and it is the basis for the development of the regional programs, which should include the regional entomological surveillance program. Aedes albopictus was recorded for the first time in the Region of Murcia, in 2011. It gave rise to a new epidemiological scenario due to the presence of a competent vector of several arboviruses, which resulted in autochthonous cases of dengue in 2018. Methods: 40 out of 45 municipalities participated in the regional entomological surveillance program, and 266 sampling points were established, with two ovitraps at each site as pseudo-replications. The study period was from April 16th to November 26th, with bi-weekly sample collections: 16 regional samplings were carried out. Results: Regional participation was high, and data loss was low (1.26%). Ae. albopictus was detected in 4.9% of samples and 89.4% of points, located in 39 of the 40 municipalities. The intensity of the presence of Ae. albopictus was estimated by a positivity index, that is, the percentage of positive samples over time. The vector phenology was obtained at a regional level, using the number of eggs as estimation of population density and the positivity values of points and municipalities. Every two weeks, real-time results were provided to the municipalities, which could use them as a vector management tool. Conclusion: The regional entomological surveillance program for Ae. albopictus in the Region of Murcia was consolidated in 2019, with standardized and comparable methods. Almost all the municipalities of the region have observed the presence of Ae. albopictus, although intensity and spatial and temporal cover vary among them.


2019 ◽  
Vol 56 (5) ◽  
pp. 1395-1403 ◽  
Author(s):  
David Bradt ◽  
Jillian D Wormington ◽  
James M Long ◽  
W Wyatt Hoback ◽  
Bruce H Noden

Abstract Vector-borne diseases in the United States have recently increased as a result of the changing nature of vectors, hosts, reservoirs, pathogens, and the ecological and environmental conditions. Current information on vector habitats and how mosquito community composition varies across space and time is vital to successful vector-borne disease management. This study characterizes mosquito communities in urban areas of Oklahoma, United States, an ecologically diverse region in the southern Great Plains. Between May and September 2016, 11,996 female mosquitoes of 34 species were collected over 798 trap nights using three different trap types in six Oklahoma cities. The most abundant species trapped were Culex pipiens L. complex (32.4%) and Aedes albopictus (Skuse) (Diptera: Culicidae) (12.0%). Significant differences among mosquito communities were detected using analysis of similarities (ANOSIM) between the early (May–July) and late (August–September) season. Canonical correlation analysis (CCA) further highlighted the cities of Altus and Idabel as relatively unique mosquito communities, mostly due to the presence of Aedes aegypti (L.) and salt-marsh species and absence of Aedes triseriatus (Say) in Altus and an abundance of Ae. albopictus in Idabel. These data underscore the importance of assessing mosquito communities in urban environments found in multiple ecoregions of Oklahoma to allow customized vector management targeting the unique assemblage of species found in each city.


2019 ◽  
Vol 30 (5) ◽  
pp. 192-194
Author(s):  
John (Luke) Lucas

The author considers the threat to vector-borne diseases in the light of climate change.


Sign in / Sign up

Export Citation Format

Share Document