scholarly journals Role of behavioural communication change in integrated vector management against vector borne diseases especially dengue in Punjab, Pakistan

2017 ◽  
Vol 7 (6) ◽  
pp. 362-363
Author(s):  
Hazrat Bilal ◽  
◽  
Zia Ullah ◽  
Saboor Ahmad ◽  
Sumrin Sahar ◽  
...  
2018 ◽  
Vol 7 (1) ◽  
Author(s):  
Jorge Marcos-Marcos ◽  
Antonio Olry de Labry-Lima ◽  
Silvia Toro-Cardenas ◽  
Marina Lacasaña ◽  
Stéphanie Degroote ◽  
...  

2013 ◽  
Vol 12 (1) ◽  
Author(s):  
Emmanuel Chanda ◽  
John M Govere ◽  
Michael B Macdonald ◽  
Richard L Lako ◽  
Ubydul Haque ◽  
...  

2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Shadreck Sande ◽  
Moses Zimba ◽  
David Nyasvisvo ◽  
Munyaradzi Mukuzunga ◽  
Emmanuel H. Kooma ◽  
...  

Abstract Background This paper outlines Zimbabwe’s potential readiness in harnessing integrated vector management (IVM) strategy for enhanced control of vector-borne diseases. The objective is to provide guidance for the country in the implementation of the national IVM strategy in order to make improvements required in thematic areas of need. The paper also assesses the existing opportunities and gaps to promote and adopt the approach as a national policy. Main text Despite recent gains in combating vector-borne diseases, especially malaria, management of vector control programmes still remains insecticide-based and vertical in nature. Therefore, concerns have been raised on whether the current long-standing conventional vector control strategy still remains with sufficient action to continue to break the transmission cycle to the levels of elimination. This is so, given the continuous dwindling resources for vector control, changes in vector behaviour, the emergence of resistance to medicines and insecticides, climate change, environmental degradation, as well as diversity in ecology, breeding habitats, and community habits. Cognizant of all that, elements of a surveillance-driven IVM approach are rapidly needed to move vector control interventions a step further. These include advocacy, policy formulation, capacity building, public and private partnerships, community engagement, and increasingly basing decisions on local evidence. Understanding the existing opportunities and gaps, and the recognition that some elements of IVM are already imbedded in the current health programmes is important to encourage stakeholders to promptly support its implementation. Leveraging on the existing opportunities, combined with sufficient advocacy, IVM could easily be accepted by the Zimbabwe government as part of a wider integrated disease management strategy. The strategy could represent an excellent breakthrough to establish much needed intra and inter-sectoral dialogue, and coordination for improved vector-borne disease prevention. Conclusions After synthesis of the opportunities and challenges clearly presented, it was concluded that it is imperative for Zimbabwe to adopt and implement IVM strategy that is informed by work already done, while addressing the bottlenecks. The significance of refocusing for improved disease prevention that has the potential to accomplish elimination of not only malaria but all vector borne diseases much earlier than anticipated under the existing vector control system is underscored.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Ian Wright ◽  
Frans Jongejan ◽  
Mary Marcondes ◽  
Andrew Peregrine ◽  
Gad Baneth ◽  
...  

Abstract The Companion Vector-Borne Diseases (CVBD) World Forum is a working group of leading international experts who meet annually to evaluate current scientific findings and future trends concerning the distribution, pathogenesis, clinical presentation, diagnosis and prevention of vector-borne infections of dogs and cats. At the 14th Symposium of the CVBD World Forum in Trieste, Italy (March 25–28, 2019), we identified the need to (i) bring attention to the potential spread of parasites and vectors with relocated dogs, and (ii) provide advice to the veterinary profession regarding the importance of surveillance and treatment for parasites and vector-borne infections when rehoming dogs. This letter shares a consensus statement from the CVBD World Forum as well as a summary of the problem faced, including the role of veterinary professionals in parasite surveillance, causal issues, and the importance of interdisciplinary cooperation in addressing the problem. To limit opportunities for dissemination of parasites and vectors, whenever possible, underlying problems creating the need for dog rehoming should be addressed. However, when it is necessary to rehome dogs, this should ideally take place in the country and national region of origin. When geographically distant relocation occurs, veterinary professionals have a vital role to play in public education, vigilance for detection of exotic vectors and infections, and alerting the medical community to the risk(s) for pathogen spread. With appropriate veterinary intervention, dog welfare needs can be met without inadvertently allowing global spread of parasites and their vectors.


2020 ◽  
Vol 134 (5) ◽  
pp. jcs246744
Author(s):  
Chaima Bensaoud ◽  
Larissa Almeida Martins ◽  
Hajer Aounallah ◽  
Michael Hackenberg ◽  
Michail Kotsyfakis

ABSTRACTNon-coding RNAs (ncRNAs) are nucleotide sequences that are known to assume regulatory roles previously thought to be reserved for proteins. Their functions include the regulation of protein activity and localization and the organization of subcellular structures. Sequencing studies have now identified thousands of ncRNAs encoded within the prokaryotic and eukaryotic genomes, leading to advances in several fields including parasitology. ncRNAs play major roles in several aspects of vector–host–pathogen interactions. Arthropod vector ncRNAs are secreted through extracellular vesicles into vertebrate hosts to counteract host defense systems and ensure arthropod survival. Conversely, hosts can use specific ncRNAs as one of several strategies to overcome arthropod vector invasion. In addition, pathogens transmitted through vector saliva into vertebrate hosts also possess ncRNAs thought to contribute to their pathogenicity. Recent studies have addressed ncRNAs in vectors or vertebrate hosts, with relatively few studies investigating the role of ncRNAs derived from pathogens and their involvement in establishing infections, especially in the context of vector-borne diseases. This Review summarizes recent data focusing on pathogen-derived ncRNAs and their role in modulating the cellular responses that favor pathogen survival in the vertebrate host and the arthropod vector, as well as host ncRNAs that interact with vector-borne pathogens.


2012 ◽  
Vol 279 (1737) ◽  
pp. 2354-2362 ◽  
Author(s):  
Luigi Sedda ◽  
Heidi E. Brown ◽  
Bethan V. Purse ◽  
Laura Burgin ◽  
John Gloster ◽  
...  

The 2006 bluetongue (BT) outbreak in northwestern Europe had devastating effects on cattle and sheep in that intensively farmed area. The role of wind in disease spread, through its effect on Culicoides dispersal, is still uncertain, and remains unquantified. We examine here the relationship between farm-level infection dates and wind speed and direction within the framework of a novel model involving both mechanistic and stochastic steps. We consider wind as both a carrier of host semio-chemicals, to which midges might respond by upwind flight, and as a transporter of the midges themselves, in a more or less downwind direction. For completeness, we also consider midge movement independent of wind and various combinations of upwind, downwind and random movements. Using stochastic simulation, we are able to explain infection onset at 94 per cent of the 2025 affected farms. We conclude that 54 per cent of outbreaks occurred through (presumably midge) movement of infections over distances of no more than 5 km, 92 per cent over distances of no more than 31 km and only 2 per cent over any greater distances. The modal value for all infections combined is less than 1 km. Our analysis suggests that previous claims for a higher frequency of long-distance infections are unfounded. We suggest that many apparent long-distance infections resulted from sequences of shorter-range infections; a ‘stepping stone’ effect. Our analysis also found that downwind movement (the only sort so far considered in explanations of BT epidemics) is responsible for only 39 per cent of all infections, and highlights the effective contribution to disease spread of upwind midge movement, which accounted for 38 per cent of all infections. The importance of midge flight speed is also investigated. Within the same model framework, lower midge active flight speed (of 0.13 rather than 0.5 m s −1 ) reduced virtually to zero the role of upwind movement, mainly because modelled wind speeds in the area concerned were usually greater than such flight speed. Our analysis, therefore, highlights the need to improve our knowledge of midge flight speed in field situations, which is still very poorly understood. Finally, the model returned an intrinsic incubation period of 8 days, in accordance with the values reported in the literature. We argue that better understanding of the movement of infected insect vectors is an important ingredient in the management of future outbreaks of BT in Europe, and other devastating vector-borne diseases elsewhere.


Sign in / Sign up

Export Citation Format

Share Document