scholarly journals Population structure and spatio-temporal transmission dynamics of Plasmodium vivax after radical cure treatment in a rural village of the Peruvian Amazon

2014 ◽  
Vol 13 (1) ◽  
Author(s):  
Christopher Delgado-Ratto ◽  
Veronica E Soto-Calle ◽  
Peter Van den Eede ◽  
Dionicia Gamboa ◽  
Angel Rosas ◽  
...  
2010 ◽  
Vol 9 (1) ◽  
Author(s):  
Peter Van den Eede ◽  
Gert Van der Auwera ◽  
Christopher Delgado ◽  
Tine Huyse ◽  
Veronica E Soto-Calle ◽  
...  

PLoS ONE ◽  
2013 ◽  
Vol 8 (12) ◽  
pp. e82553 ◽  
Author(s):  
Noor Rain Abdullah ◽  
Bridget E. Barber ◽  
Timothy William ◽  
Nor Azrina Norahmad ◽  
Umi Rubiah Satsu ◽  
...  

PLoS Medicine ◽  
2021 ◽  
Vol 18 (4) ◽  
pp. e1003535
Author(s):  
Narimane Nekkab ◽  
Raquel Lana ◽  
Marcus Lacerda ◽  
Thomas Obadia ◽  
André Siqueira ◽  
...  

Background Despite recent intensification of control measures, Plasmodium vivax poses a major challenge for malaria elimination efforts. Liver-stage hypnozoite parasites that cause relapsing infections can be cleared with primaquine; however, poor treatment adherence undermines drug effectiveness. Tafenoquine, a new single-dose treatment, offers an alternative option for preventing relapses and reducing transmission. In 2018, over 237,000 cases of malaria were reported to the Brazilian health system, of which 91.5% were due to P. vivax. Methods and findings We evaluated the impact of introducing tafenoquine into case management practices on population-level transmission dynamics using a mathematical model of P. vivax transmission. The model was calibrated to reflect the transmission dynamics of P. vivax endemic settings in Brazil in 2018, informed by nationwide malaria case reporting data. Parameters for treatment pathways with chloroquine, primaquine, and tafenoquine with glucose-6-phosphate dehydrogenase deficiency (G6PDd) testing were informed by clinical trial data and the literature. We assumed 71.3% efficacy for primaquine and tafenoquine, a 66.7% adherence rate to the 7-day primaquine regimen, a mean 5.5% G6PDd prevalence, and 8.1% low metaboliser prevalence. The introduction of tafenoquine is predicted to improve effective hypnozoite clearance among P. vivax cases and reduce population-level transmission over time, with heterogeneous levels of impact across different transmission settings. According to the model, while achieving elimination in only few settings in Brazil, tafenoquine rollout in 2021 is estimated to improve the mean effective radical cure rate from 42% (95% uncertainty interval [UI] 41%–44%) to 62% (95% UI 54%–68%) among clinical cases, leading to a predicted 38% (95% UI 7%–99%) reduction in transmission and over 214,000 cumulative averted cases between 2021 and 2025. Higher impact is predicted in settings with low transmission, low pre-existing primaquine adherence, and a high proportion of cases in working-aged males. High-transmission settings with a high proportion of cases in children would benefit from a safe high-efficacy tafenoquine dose for children. Our methodological limitations include not accounting for the role of imported cases from outside the transmission setting, relying on reported clinical cases as a measurement of community-level transmission, and implementing treatment efficacy as a binary condition. Conclusions In our modelling study, we predicted that, provided there is concurrent rollout of G6PDd diagnostics, tafenoquine has the potential to reduce P. vivax transmission by improving effective radical cure through increased adherence and increased protection from new infections. While tafenoquine alone may not be sufficient for P. vivax elimination, its introduction will improve case management, prevent a substantial number of cases, and bring countries closer to achieving malaria elimination goals.


2012 ◽  
Vol 6 (4) ◽  
pp. e1592 ◽  
Author(s):  
Moritoshi Iwagami ◽  
Megumi Fukumoto ◽  
Seung-Young Hwang ◽  
So-Hee Kim ◽  
Weon-Gyu Kho ◽  
...  

Author(s):  
Antonio A. S. Balieiro ◽  
Andre M. Siqueira ◽  
Gisely C. Melo ◽  
Wuelton M. Monteiro ◽  
Vanderson S. Sampaio ◽  
...  

In Brazil, malaria caused by Plasmodium vivax presents control challenges due to several reasons, among them the increasing possibility of failure of P. vivax treatment due to chloroquine-resistance (CQR). Despite limited reports of CQR, more extensive studies on the actual magnitude of resistance are still needed. Short-time recurrences of malaria cases were analyzed in different transmission scenarios over three years (2005, 2010, and 2015), selected according to malaria incidence. Multilevel models (binomial) were used to evaluate association of short-time recurrences with variables such as age. The zero-inflated Poisson scan model (scanZIP) was used to detect spatial clusters of recurrences up to 28 days. Recurrences compose less than 5% of overall infection, being more frequent in the age group under four years. Recurrences slightly increased incidence. No fixed clusters were detected throughout the period, although there are clustering sites, spatially varying over the years. This is the most extensive analysis of short-time recurrences worldwide which addresses the occurrence of P. vivax CQR. As an important step forward in malaria elimination, policymakers should focus their efforts on young children, with an eventual shift in the first line of malaria treatment to P. vivax.


Science ◽  
2021 ◽  
pp. eabf2946
Author(s):  
Louis du Plessis ◽  
John T. McCrone ◽  
Alexander E. Zarebski ◽  
Verity Hill ◽  
Christopher Ruis ◽  
...  

The UK’s COVID-19 epidemic during early 2020 was one of world’s largest and unusually well represented by virus genomic sampling. Here we reveal the fine-scale genetic lineage structure of this epidemic through analysis of 50,887 SARS-CoV-2 genomes, including 26,181 from the UK sampled throughout the country’s first wave of infection. Using large-scale phylogenetic analyses, combined with epidemiological and travel data, we quantify the size, spatio-temporal origins and persistence of genetically-distinct UK transmission lineages. Rapid fluctuations in virus importation rates resulted in >1000 lineages; those introduced prior to national lockdown tended to be larger and more dispersed. Lineage importation and regional lineage diversity declined after lockdown, while lineage elimination was size-dependent. We discuss the implications of our genetic perspective on transmission dynamics for COVID-19 epidemiology and control.


Sign in / Sign up

Export Citation Format

Share Document