scholarly journals Spatio-temporal analysis of the relationship between WNV dissemination and environmental variables in Indianapolis, USA

2008 ◽  
Vol 7 (1) ◽  
pp. 66 ◽  
Author(s):  
Hua Liu ◽  
Qihao Weng ◽  
David Gaines
2011 ◽  
Vol 68 (3) ◽  
pp. 528-536 ◽  
Author(s):  
Miguel Bernal ◽  
Yorgos Stratoudakis ◽  
Simon Wood ◽  
Leire Ibaibarriaga ◽  
Luis Valdés ◽  
...  

Abstract Bernal, M., Stratoudakis, Y., Wood, S., Ibaibarriaga, L., Uriarte, A., Valdés, L., and Borchers, D. 2011. A revision of daily egg production estimation methods, with application to Atlanto-Iberian sardine. 2. Spatially and environmentally explicit estimates of egg production. – ICES Journal of Marine Science, 68: . A spatially and environmentally explicit egg production model is developed to accommodate a number of assumptions about the relationship between egg production and mortality and associated environmental variables. The general model was tested under different assumptions for Atlanto-Iberian sardine. It provides a flexible estimator of egg production, in which a range of assumptions and hypotheses can be tested in a structured manner within a well-defined statistical framework. Application of the model to Atlanto-Iberian sardine increased the precision of the egg production time-series, and allowed improvements to be made in understanding the spatio-temporal variability in egg production, as well as implications for ecology and stock assessment.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Tarun Kumar Mondal ◽  
Santana Sarkar

Abstract An attempt has been made in this paper to analyse the spatio-temporal variations of cropping intensity and irrigation intensity, and their relationship, in North Twenty Four Parganas district in West Bengal, India from 1996/97 to 2015/16. The relationship between cropping intensity and irrigation intensity has been assessed using partial correlation, residual mapping and hierarchical cluster analysis. One-way ANOVA has been conducted for testing the equality of cluster means. Temporal analysis from 1996/97 to 2015/16 has shown a low positive correlation between cropping intensity and irrigation intensity for the entire district. Analysis at Agricultural Block level has revealed that cropping intensity decreased in many cases even after an increase in irrigation intensity. In general, cropping intensity has increased with the increase in irrigation intensity in the Coastal Saline Region and the Ichhamati Basin, whereas cropping intensity has increased even after a decrease in irrigation intensity in the Gangetic Plains Region in the district.


2020 ◽  
Author(s):  
Harry West ◽  
Nevil Quinn ◽  
Michael Horswell

<p>The North Atlantic Oscillation (NAO) is one of the primary atmospheric circulations which influence weather patterns in Great Britain. Its two phases (either positive or negative depending on differences in sea level pressure) result in characteristic precipitation patterns, the effects of which cascade down to signatures in streamflow. However, in relation to streamflow response to the NAO, these studies have been spatio-temporally limited as they have been undertaken using a small number of measurement sites with relatively short records.</p><p>The release of new historic datasets from the UK Centre for Ecology and Hydrology (CEH) provides a new opportunity to undertake a broad spatio-temporal analysis of the relationship between NAO and streamflow. This research used reconstructed daily flows for 291 catchments and the associated Standardised Streamflow Index (SSI) to explore the relationship between the North Atlantic Oscillation Index (NAOI) for the period January 1900-November 2015. Spearman correlations were calculated at monthly intervals between the NAOI and SSI (with a 1-month accumulation period), and the historic flows dataset was used to explore the variability in flows across the catchments under NAO+ and NAO- phases.</p><p>This analysis revealed distinct wet and dry spatio-temporal signatures in streamflow. The winter months are characterised by a north-west and south-east divide in this relationship; catchments in the northern and western regions show strong positive correlations between the NAOI and SSI and NAO+ is associated with higher than normal flows in many north-western catchments, and vice versa under NAO-. While catchments in the south-eastern and central regions are negatively correlated and therefore show and opposite wet-dry response. However, during the summer months, while there are some wet-dry signatures under NAO positive/negative phases - the reverse to that seen in winter, almost all catchments show weak NAOI-SSI negative correlation values. </p><p>Finally, we compare the wet-dry responses to the NAO observed in streamflow to NAO-precipitation patterns, measured via correlations between the NAOI and Standardised Precipitation Index with a 1-month accumulation period over the same study period. The two sets of correlations (NAO-SPI and NAO-SSI) were analysed for spatio-temporal similarity through a Geographically Weighted Regression (GWR) analysis and a space-time clustering analysis. This revealed that in winter, as described above, the correlations with SPI and SSI generally behave similarly during the winter months – i.e. the wet-dry signatures in rainfall cascade down and are identifiable in streamflow patterns. In the summer months the NAOI-SPI correlations for the majority of catchments are negative. In the NAOI-SSI correlations, the summer values, while still negative, are notably weaker. The catchments with the weakest NAOI-SSI correlations are those generally in the central/southern region. These catchments have very slow response times due to their characteristics which may moderate the NAO wet/dry rainfall deviation.</p>


2016 ◽  
Author(s):  
M. Oliveira ◽  
Ana C. Teodoro ◽  
A. Freitas ◽  
J. Bernardes ◽  
H. Gonçalves

Sign in / Sign up

Export Citation Format

Share Document